ControlLogix Compute
Modules

Catalog Numbers 1756-CMS1B1, 1756-CMS1C1, 1756-CMS1D1,
1756-CMSTH1

D Allen-Bradley

by ROCKWELL AUTOMATION

User Manual Original Instructions

ControlLogix Compute Modules User Manual

Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before
you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to
requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably
trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of
this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with
any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: |dentifies information about practices or circumstances that can cause an explosion in a hazardous environment,
which may lead to personal injury or death, property damage, or economic loss.

A\
JAN

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property
damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

IMPORTANT Identifies information that is critical for successful application and understanding of the product.

These labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous
voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may
reach dangerous temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to
potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL
Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).

The following icon may appear in the text of this document.

Identifies information that is useful and can help to make a process easier to do or easier to understand.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Table of Contents

ControlLogix Compute Modules

Windows Operating System
Overview

Preface
About This Publication.cooiiii e 1
Download Firmware, AOP, EDS, and Other Filesoviiiiiiii it 7
Summary of Changes. . ..o v e 1
TErMINOIOGY.o 1
Additional RESOUICES e et 8
Chapter 1
MOdUIB DVEIVIBW . . . et ettt e e 9
Catalog Number Explanation. ... e 10
Series B ControlLogix Compute Module Features.............cooviiiiiiiaen... 10
Double Data Rate (DDR) Backplane Communication......................... 10
Trusted Platform Module (TPM) 2.0 Settingscovveeeeeeeeeeneioo. ... 10
Module CoOmMPONENES. . ..ttt |
Module Locationoeee e e 13
Local Chassis. . .o v ettt 13
REMOtE Chassis. . v v ettt 14
StatuS INdICatorst 15
Connection OPtiONS e e 16
DiSplayPort. . .o 16
USB 3.0 POrt. ..t 17
Ethernet POrtS. . ..o 18
Rotary SWItCheso 20
RESEE BULLON . .o\ttt e 21
Replacement Batteryooueeniii i 22
Chapter 2
Follow Design and Engineering Best Practices............coooviiiiiiiniinn.... 25
Connect Monitor and Peripherals Before Powerup. ..., 25
SBCUMY SBLINGS. . . ettt 26
Windows 10 0S Updatesoeeneeee e 26
Using .NET Framework 3.5.o ie i 26
Inactivity Lock and Screen Saver Settingscoooiiiiiiiiiiiiiin... 26
Password Settingsvueii e 27
Account Lockout Settingso.ooni i 27
Network Settings.ooueeee i 28
Internet Explorer Settingscoovii i 28
Removable Media Settings.c.veniiii 28
Remote Desktop Settings.cooeiiiii 29
Driver Signature Enforcement. ..o 29
Implement a BIOS Passwordoouiuiiii e 31
1756-CMS1B1/A Module BIOS Security Settings.ccovoveieiiiii.... 31
1756-CMS1B1/B Module BIOS Security Settings.ccoveeieiinenna... 31
SECUrE BOOt. .\ 32
Information on the Module Can't Be Erasedc.coooeiiiiiiiiiii.t 32
Data Lost Due to 0S Corruption Can't Be Recoveredccooviiinian.... 32

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 3

Table of Contents

Linux Operating System
Overview

Application Development

Backplane API Library
Functions

Chapter 3
Follow Design and Engineering Best Practices............ccooiiiiiiiiiiintt. 33
Connect Monitor and Peripherals Before Powerup.............cooiiiiiiiiit, 33
SBCUMY SELINGS. . . ettt e 34
Password Settingsc.oouiii i 34
Account Lockout Settingso.veni i 35
Secure Shell Access Settings. .. .ovvveeie i 35
User Account Access Settings.ovee e e 36
Access to Core Dumps Settingsouveniineii i 36
Prelink Settings. . ..o 36
PINg Settings . ..o et 36
Settings Not Implemented On the Module ..., 37
Additional Considerationsoeueen e e 37
Implement @ BIOS Passwordooeinnii 38
1756-CMS1C1/A Module BIOS Security Settings.cooveviieiiiii... 38
1756-CMS1C1/B, 1756-CMS1D1 and 1756-CMSTH1 Module BIOS Security Settings ... 38
SECUrE BOOt ..\t 39
Information on the Module Can't Be Erasedcooouiiiiiiiiiiin.... 39
Data Lost Due to 0S Corruption Can't Be Recoveredcoviiiiian.... 39

Chapter &4
AP ArCRItBCIUI ottt e e 4
8 TS T o 42
API Library Already Installedooeneii e 43
Install the APl Development Files (SDK)oooeenieie e 43
Remave the SDKo 43
Four-character Alphanumeric Display.........covieiiiiiiiiii i, 43
L 0] T 43
Calling Conventionoene e e Lk
Header Files.o Lk
Sample COde . . e 45
IMPOrt Library . ..o e 4h
APLFIIES ettt 4h
Host Applicationoone i 45
.. 46

Chapter 5
Initialization Function Categoryooneeniiii e 49
DX CIP 0PN ettt 49
OCXCip_0penNB.o 50
OCXCIP_CIOSE. . . et 50
Object Registration Function Categorycooviiiiiiii i, b1
OCXcip_RegisterAssembly0bjcooiiiiiii b1
0CXcip_UnregisterAssembly0bjo 52
Special Callback Registration Function Category............ccoooviiiiiiaen... 52
OCXcip_RegisterFatalFaultRtn. ... 52
OCXcip_RegisterResetReqRtn ..o 53
Connected Data Transfer Function Categorycoviiiiiiiiiiiian., b3

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Table of Contents

OCXcip_Write Connectedc.oiiniei e 53
OCXcip_ReadConnected.covnirniiir e e b4
OCXcip_ImmediateQutputcooiinii b4
OCXcip_WaitForRxData.oeee e 55
0CXcip_WriteConnectedimmediateccooeiiiiiiiiiiinniininn.. 55
Tag Access FUNCHIONSove e 56
OCXcip_AccessTagDataovueeeee e 56
OCXcip_AccessTagDataAbortable.........c.oovviiiiin i 58
OCXcip_CreateTagDbHandlecccoiieiii 58
OCXcip_DeleteTagDbHandle.oovniiiei i 59
0CXcip_SetTagDbOptions.c.uee e 60
OCXcip_BuildTagDb.ot 61
OCXcip_TestTagDbVert e e 62
0CXcip_GetSymbolInfo.ooe e 63
OCXcip_GetStructInfo. . ..o 64
OCXcip_GetStructMbrinfo.oeee 65
0CXcip_GetTagDbTagInfocuneee e 66
OCXcip_AccessTagDatabDb..........ooiieiinni 67
0CXcip_SetTagAccessCONNSIZE . .ovev et 68
Messaging FUNCHIONSot 69
OCXcip_GetDeviceldObject.oene e 69
OCXcip_GetDevicelCPODJECtvee e 70
OCXcip_GetDeviceldStatus.cee e 7
OCXcip_GetExDevObject.t 73
OCXCip_GetWCTIME .ttt T4
0CXCip_SetWCTIME. . . e 76
OCXcip_GetWCTIMEUTC . ..ot 78
OCXcip_SetWCTImeUTCt 80
OCXcip_PLC5TypedRead.o 81
OCXcip_PLCETYpedWrite . .ot 82
OCXcip_PLC5WordRangeWrite.oovneee e 84
OCXcip_PLC5WordRangeReadcoooiiiii 85
OCXcip_PLC5ReadModWrite.oveeee e 87
OCXcip_SLCProtTypedReadcoviuniiiei e 88
OCXcip_SLCProtTypedWrite.oene e 90
OCXcip_SLCReadModWrite.ovne i 92
Miscellaneous FUNCHIONSo e 94
OCXcip_GetldObjectc.ueeri 94
OCXcip_SetldObjectt 95
OCXcip_GetActiveNodeTableooeeneii e 95
OCXCIp_MSQRESPONSE.t 96
OCXcip_GetVersionInfo.covueiii e 97
OCXCIp_SEtLED . et 97
OCXCIp_GEtLED ...\t 98
OCXCIp_SetDisplayveeee e 98
OCXCip_GetDiSplay ... e et 98
0CXcip_GetSwitchPosition.o 99
OCXcip_SetModuleStatusovveee e 99
OCXCip_ErrorString. .. oot 100
OCXCIP_SIBRP. . e et 100

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 5

Table of Contents

Program-controlled Status
Indicators

Specify the Communication
Path

Module Tag
Naming Conventions

OCXcip_CalculateCRC 100
OCXcip_SetModuleStatusWord.oooneeeie e 101
OCXcip_GetModuleStatusWordcooieiiiii i 101
Callback FUNCLIONSot 102
COMNEBCE_PIOC. - ettt ettt e ettt e e e e e et e e e eaenne 102
SBIVICE_PIOC - e ettt te et e et ettt e et et e e e e 104
fatalfault_proc. 105
FESEIrEQUEST_PIOC . . ettt ettt 106
Appendix A
Four-character Displayooueiniiiie e 107
Status INdICAtOrSt 108
Appendix B
... 109
Appendix C
CONtroller TagS « . e e m
Program Tagso ee ettt m
Index ... 13

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Preface

About This Publication

Download Firmware, AOP,
EDS, and Other Files

Summary of Changes

Terminology

This manual explains how to use ControlLogix® Compute modules in a ControlLogix 5570 or
ControlLogix 5580 control system. You create custom application programs in the embedded
operating system on the module.

Make sure that you're familiar with the following:
» Use of ControlLogix 5570 or ControlLogix 5580 controllers

« High-level language software development in a Windows® 10 or Linux operating
system (0S)

Download firmware, associated files (such as AQP, EDS, and DTM), and access product release
notes from the Product Compatibility and Download Center at rok.auto/pcdc.

This publication contains the following new or updated information. This list includes
substantive updates only and is not intended to reflect all changes.

Topic Page

Updated information about the communication and security features available on all
Series B ControlLogix Compute modules

Added Series B 1756-CMS1B1 Compute module Secure Boot information 32

Added Series B 1756-CMS1C1 Compute module to information about how to Implement a 38
BIOS Password on Compute modules with an embedded Linux 0S

Added Series B 1756-CMS1D1and 1756-CMS1H1 Compute module Secure Boot information 39

10

The following terms and abbreviations are used throughout this manual. For definitions of
terms that aren't listed here, refer to the Rockwell Automation Industrial Automation Glossary,
publication AG-7.1.

Term Definition
API Application Programming Interface

Refers to the electrical interface, or bus, to which modules connect when inserted into the
Backplane chassis. The Compute module communicates with the controller through the ControlLogix
backplane.

BPIE Backplane Interface Engine
Accesses the device driver on the backplane.

Basic Input Output System.

BIOS The BIOS firmware initializes the module at power-on, performs self-diagnostics, and loads the
operating system.
Clp™ Common Industrial Protocol.

The messaging protocol that is used for communications over the ControlLogix backplane.

A logical binding between two objects. A connection lets more efficient use of bandwidth occur

Connection because the message path isn't included once the connection is established.

Consumer A destination for data.

DLL Dynamic Link Library

Refers to the library file that contains the API functions. The library must be linked with the

Library developer application code to create the final executable program.
Mutex A system object that is used to provide mutually exclusive access to a resource.
Originator A client that establishes a connection path to a target.
Producer A source of data.
SDK Software Development Kit. o
A collection of files necessary to develop an application
Target The end node to which an originator establishes a connection.
Thread Code that is executed within a process. A process can contain multiple threads.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 7

https://rok.auto/pcdc
http://literature.rockwellautomation.com/idc/groups/literature/documents/qr/ag-qr071_-en-p.pdf

Additional Resources These documents contain additional information concerning related products from Rockwell
Automation. You can view or download publications at rok.auto/literature.

Resource Description
ControlLogix Compute Modules Installation Instructions, . : .
publication 1756-IN072 Describes how to install ControlLogix Compute modules.
1756 ControlLogix I/0 Specifications Technical Data, publication 1756-TD002 |Provides specification information for ControlLogix I/0 modules
: 3 Describes how to configure and use EtherNet/IP™ devices to communicate on the
EtherNet/IP Network Devices User Manual, ENET-UM006 EtherNet/IP network.
Ethernet Reference Manual, ENET-RM002 Describes basic Ethernet concepts, infrastructure components, and infrastructure features.
Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1 |Provides general guidelines for installing a Rockwell Automation industrial system.
Product Certifications website, rok.auto/certifications. Provides declarations of conformity, certificates, and other certification details.

8 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

https://rok.auto/literature
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/1756-in072_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/1756-in072_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/td/1756-td002_-en-e.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/um/enet-um006_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/enet-rm002_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/enet-rm002_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/in/1770-in041_-en-p.pdf
https://rok.auto/certifications

Chapter]

Module Overview

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

ControlLogix Compute Modules

This chapter describes the ControlLogix® Compute modules.

ControlLogix Compute modules are chassis-based modules that let you communicate directly
with a ControlLogix 5570 or ControlLogix 5580 controller via the system backplane and over a
network.

The modules offer an embedded operating system (0S) that lets you create custom
applications. ControlLogix Compute modules come with an instance of one of the following on
them:

« Windows®10 loT Enterprise 64 bit

« Linux 32 bit (Debian)

« Linux 64 bit (Debian)

« Linux 64 bit (Red Hat Enterprise Linux)

IMPORTANT In the rest of this document, the following conventions are used:

» Embedded 0S refers to both 0S types

« Windows 0S refers to the Windows 10 IoT Enterprise 64-bit 0S

« Debian Linux 0S 32 bit refers to the 32 bit Debian GNU/Linux 0S

» Debian Linux 0S 64 bit refers to the 64 bit Debian GNU/Linux 0S

« Red Hat Linux 0S 64 bit refers to the 64 bit Red Hat Enterprise Linux
(RHEL) 0S

The embedded 0S lets you perform tasks on the controller that would otherwise be performed
on an external workstation in other Logix 5000™ control systems. The presence of a
ControlLogix Compute module in a ControlLogix chassis is similar to installing a personal
computer in a ControlLogix chassis.

Chapter 1 ControlLogix Compute Modules

Catalog Number
Explanation

Series B ControlLogix
Compute Module Features

10

ControlLogix Compute module catalog numbers indicate specific information about the
module. All modules use the same format, that is, 1756-CMSxyz, where the following apply:

1756 is the Bulletin number.

» CMS=Compute Module

« xrepresents the solid-state drive (SSD) capacity

« yrepresents the embedded 0S that is installed on the module
» zrepresents the application that is shipped on the module

This table describes the variables in a ControlLogix Compute module catalog number.

ControlLogix Compute Module Catalog Numbers

Variable |Attribute Possible Value

X SSD capacity + 1=32GB

» B=Windows 0S
« C = Debian Linux 0S 32 bit

v |Operating system « D = Debian Linux 0S 64 bit
« H=Red Hat Linux OS 64 bit
z Application that is shipped on the module 1= No application

For example, these catalog numbers are described as follows:
« 1756-CMS1B1 - 32 GB SSD, and an embedded Windows 10 loT Enterprise 64-bit 0S.
« 1756-CMSI1C1- 32 GB SSD, and an embedded Linux 32 bit (Debian) 0S.
« 1756-CMS1D1 - 32 GB SSD, and an embedded Linux 64 bit (Debian) 0S.
« 1756-CMS1H1 - 32 GB SSD, and an embedded Linux 64 bit (Red Hat) 0S.
Modules do not include a preloaded application.

This section describes the communication and security features available on all Series B
ControlLogix Compute modules.

Double Data Rate (DDR) Backplane Communication

Series B Compute modules provide DDR synchronous dynamic random access memory
transfer across the ControlLogix backplane. DDR computer memory sends and receives data
twice per cycle, moving larger amounts of data at a faster rate than SDRAM. However, DDR
does not impact the transfer rate of smaller amounts of data.

Trusted Platform Module (TPM) 2.0 Settings

TPM 2.0 is a secure crypto-processor component that improves hardware security by allowing
you to verify when software is running on your system and how it's configured.

Series B Compute modules come with TPM 2.0 enabled by default. TPM can be disabled by
changing the Advanced>Trusted Computing>Security Device Support option within the BIOS
setup.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 1 ControlLogix Compute Modules

Module Components

This table describes the components available on all ControlLogix Compute modules.

ControlLogix Compute Module Components

Component Description
E]n\tAe”[;]fdtOhvssf%IISOW|ng embedded 0S: Lets you install commercially available software and/or create custom
« Linux 0S applications while using the backplane API.

Onboard memory

4GB - RAM

Four-character display

Scrolls information about the module. For example, the characters INIT
scroll across the display after a device driver starts successfully.

Status indicators

Show information about the module status and health. These indicators are
user-defined and, therefore, unique to the application. That is, indicators
USRI, USR2, and USR3.

Reset button

Used with the embedded 0S to perform one of the following:
« Orderly shutdown of the 0S.

« Reset the 0S.

« Start the 0S.

DisplayPort Connect to a monitor to use with the embedded 0S.

USB 3.0 port Connect peripherals to be used with the embedded 0S.

Two 1Gb Ethernet ports Used with the Ethernet protocol.

Rotary switches Application-specific.

Battery Provides real-time clock persistence when the module isn't powered.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 n

Chapter 1 ControlLogix Compute Modules

This figure shows the components that are visible on a ControlLogix Compute module.

ControlLogix Compute Module Components

Front View - Series A Front View - Series B Front View - Series B Components that are shown
are consistent across Series A
and Series B modules.

COMPUTE 1756-CMS1D1
COMPUTE T
0000 0000 Four-character Display
U U U ok FF(FFC F;c ™ RN FonC Fone ok Status Indicators

Reset Button

DisplayPort

USB 3.0 Port

Ethernet ports 1and 2

+ On modules that use a
Windows 0S, the top port
is Ethernet 2, and the
bottom port is Ethernet.

+ On modules that use a
Debian Linux 0S, the top
port is eth0, and the
bottom port is eth.

+ On modules that use a
Red Hat Linux OS, the top

Side View port is enp2s0, and the

bottom port is enpés0.

Back View

llen-Bradley

T

A

\Jﬁ
@

W% WSt o TSt .

Battery (inside plastic holder) —— ! Eﬁ

° (|
Rotary Switches —— B e

12 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 1 ControlLogix Compute Modules

Module Location

A ControlLogix Compute module can reside locally in the same chassis as the controller orin a
chassis that is remote from the controller with which it communicates.

Local Chassis

This figure shows a ControlLogix 5580 control system that includes a ControlLogix Compute
module.

ControlLogix 5580 System with Compute Module

O

—©) ANALOG INPUT| || (5> ACouTPUT \
[l 3
cnL mm
stlorzsassrg
() [}
DIAGNOSTIC

Allen-Bradley 3 i ;

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 13

Chapter 1 ControlLogix Compute Modules

Remote Chassis

This figure shows a control system with a ControlLogix Compute module in a remote chassis.

Control Application with Compute Module in Remote Chassis

ControlLogix Controller
ControlLogix EtherNet/IP™ Adapter
ControlLogix I/0 Modules PowerFlex® 527 Drive

B

£

B — ¥

= Ty

Aty o)

ST ﬂ | Powerflzy- B3
S/
[| © wwnaradey (
(o])]
= Stratix® 5400 Switch
. [=E A
i %
PanelView™ Plus 7 Terminal POINT I/0™ EtherNet/IP Adapter
POINT 1/0 Modules
O O\
m- EE

@ mersadey

.
oA
el 8

RECGHRESGHREIG)

U

ControlLogix EtherNet/IP Adapter Kinetix® 5500 Drives
ControlLogix Compute Module
ControlLogix I/0 Modules

Compute Module in a Redundancy System

You can use a Compute module in a ControlLogix redundancy system. When you do, the
requirements apply:

» The module must reside in a remote chassis. The module communicates with the
ControlLogix controller over an EtherNet/IP network.

IMPORTANT The module can't reside in the primary or secondary chassis.

« |f the custom application that is used on the Compute module writes tags to the
controller in a Redundancy system, the 0CXcip_SetTagAccessConnSize function can be
required. This case is uncommon, however.

For more information on the OCXcip_SetTagAccessConnSize function, see Chapter 5,
Backplane API Library Functions on page 47.

14 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 1 ControlLogix Compute Modules

This figure shows a redundancy system with the Compute module in a remote chassis.

ControlLogix Redundancy System with Compute Module in Remote Chassis

Redundant Chassis Pair

Primary Chassis Secondary Chassis
LO)
[—& [
© wonsradey Iy — © wensrasey

210

E=——

o o
Stratix 5400 Switch

FITTTOIT |§]

MTITITTT

PanelView Plus 7 Terminal POINT 1/0 EtherNet/IP Adapter

POINT 1/0 Modules

=

ControlLogix EtherNet/IP Adapter Kinetix 5500 Drives
ControlLogix Compute Module
ControlLogix I/0 Modules

Status Indicators The ControlLogix Compute module uses a 4-character display and status indicators to show
the module state at any point in time.

For more information on how to use the 4-character display and the status indicators, see
Appendix A, Program-controlled Status Indicators on page 107.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 15

Chapter 1 ControlLogix Compute Modules

Connection Options

16

You can connect to various device types using the multiple ports available on ControlLogix
Compute modules.

DisplayPort

The DisplayPort interface allows you to connect the following industrial monitors to the
Compute module to use with the embedded 0S:

« Super Video Graphics Array (SVGA) to HD 1080p
« High-Definition Multimedia Interface (HDMI)

« Video Graphics Array (VGA)

- Digital Visual Interface (DVI)

« DisplayPort

You must use a VESA-certified DisplayPort adapter to connect some industrial monitors to the
module.

We recommend that you connect a monitor to the DisplayPort before you power up
the module.

If you power up a module with the Linux 0S before you connect a monitor, the
monitor typically does not work. If this occurs, restart the Linux 0S while leaving
the monitor connect to the DisplayPort. You can restart the Linux 0S via the reset
button on the module or by cycling power to the module. If you use the reset
button, the module does not turn off but the embedded 0S performs a reset. For
more information on the reset button, see page 21.

Connect a Cable to the DisplayPort

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 1 ControlLogix Compute Modules

USB 3.0 Port

You use the USB port to connect peripherals, for example, a wireless keyboard, to the module.
The USB port supports the use of a USB hub. USB hubs let you connect multiple peripherals to
the module via the USB port.

We recommend the following:

« Connect any peripherals to the USB port before you power up the module.

« Use wireless peripherals with the USB port to reduce the number of cables that are
connected to the module.

IMPORTANT When fully inserted, the USB connectors lock into the USB port.

Before you remove a USB connector, press the silver release tab on the
left side of the USB port.

Connect to the USB Port

USB Dongle Connection USB Cable Connection

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 7

Chapter 1

ControlLogix Compute Modules

18

Ethernet Ports

There are two Ethernet ports that let you connect the ControlLogix Compute modules to
EtherNet/IP networks. The Ethernet ports can communicate on an EtherNet/IP network at a
maximum network communication speed of 1Gbps.

To connect the module to an EtherNet/IP network, connect an RJ45 cable to an embedded
Ethernet port.

IMPORTANT Keep in mind that while Compute modules can operate on EtherNet/IP
networks, they aren't EtherNet/IP devices.

You must install an application on the embedded 0S that supports the
EtherNet/IP protocol before you can use the module on the network.

This section assumes that an application is installed that supports
communication on an EtherNet/IP network.

Connect Ethernet Cable to Compute Module

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 1 ControlLogix Compute Modules

Set the Network Internet Protocol (IP) Address

ControlLogix Compute module Ethernet ports require an IP address to support the Ethernet

protocol.

This table describes the default configuration of the Ethernet ports in a ControlLogix Compute

module.

ControlLogix Compute Module Default Ethernet Port Configuration

Embedded 0S on the Module |Port Position |Port Default Name |IP Address ‘ Mask("

Top Port Ethernet 2 None - Ports are DHCP-enabled. You can
Windows 0S use a DHCP server or other software tool to

Bottom Port | Ethernet set the address and mask.

Top Port eth0 192.168.1.250 |255.255.255.0
Debian Linux 0S None - Port is DHCP-enabled. You can use a

Bottom Port | ethl DHCP server or other software tool to set
the address and mask.

Top Port enp2s0 None - Ports are DHCP-enabled. You can
use a DHCP server or other software tool to
set the address and mask.

However, by default, ports are disabled.
« To bring up either port upon a sin%ular
. boot, run command: nmcli con up [port
Red Hat Linux 05 Bottom Port | enpés0 name]. At the next boot, the port will be

disabled.

To bring up either port at every boot, run
command: nmcli con mod [port name]
connection.autoconnect yes

See the Red Hat Network Manager
documentation for more information.

(1) The mask is also known as a Network Mask or Subnet Mask.

Your use of the Ethernet ports is application-dependent. Consider the following:
« You can use any combination of ports, that is, port 1, port 2, or both ports.

IMPORTANT

If you use both Ethernet ports, they must be connected to
separate EtherNet/IP networks. Additionally, you must set [P
addresses for the ports that use different subnets.

» You can use any IP address and mask values in your application.
« You can configure the IP address and mask to be static or dynamic.

- If an IP address and mask are static, they remain assigned to a port after power is
cycled to the module.

- If an IP address and mask are dynamic, they're cleared from the port each time
power is cycled to the module. A DHCP server must reassign values. Remember, the
IP address and mask values that are assigned after a power cycle can differ from the
ones that were used before a power cycle.

We recommend that you set the IP addresses to be static.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

19

Chapter 1 ControlLogix Compute Modules

Rotary Switches There are rotary switches on the side of the module. Out-of-the-box, the switches are set to
the 000 and aren't used until module operation begins.

ControlLogix Compute Module Rotary Switches

1756-OMS1B1

Allen-Bradley

ROCKWELL AUTOMATION

Rotary Switches

The rotary switches are application-dependent. You must install a custom application on the
module that defines how to use them. You can use the switches to perform various functions
as dictated by the custom application that is installed.

EXAMPLE Your application can dictate that part of the module power-up
sequence includes using the number set by the switches as the final
three numbers in the port 11P address.

The rotary switches set the octet according to 100 s,10 s, 1s from left to
right. In this example, if you set the switches to 004, when the power-up
sequence is complete the final octet in the port 11P address is 004.

Use a small screwdriver to turn the switches to the desired numbers.

20 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 1 ControlLogix Compute Modules

Reset Button The reset button is behind the door on the front of the Compute module.

ControlLogix Compute Module Reset Button

1756-CMS1D1
COMPUTE

0000

FUNC FUNC FUNC OK
3 2 1

Reset Button

Remember the following:

« The reset button functions like the power button on a computer and is only used with
the embedded 0S.

« You can only use the reset button when the Compute module is powered. That is, when
the module resides in a powered ControlLogix chassis.

+ We strongly recommend that you shut down the module before you remove power to
avoid potential data loss and disk corruption.

Use a tool with a small head, for example, a small screwdriver, to press the reset button when
the module is powered.

ControlLogix Compute Module Reset Button Actions and Results

Action Result

Performs an orderly shutdown of the embedded 0S.
When the shutdown is complete, the OK status indicator is in a steady
red state.

Press and release the button when
the embedded 0S is running.

Press and release the button when
the embedded 0S isn't running.

Press and hold the button down for | Performs a reset of the embedded 0S.
6 seconds. When the reset is complete, the 0K status indicator is in a steady red state.

Starts the embedded 0S.

can occur. This could cause an explosion in hazardous location installations.

WARNING: When you press the reset button while power is on, an electric arc
A Verify that power is removed or the area is nonhazardous before proceeding.

Examples of reasons that you use the reset button include:

« To perform an orderly shutdown of the embedded 0S on the module before you remove
the module from a powered chassis.

« To perform an orderly shutdown of the embedded 0S on the module before you remove
power to the chassis in which the module is installed.

« Toreset the embedded 0S after a module crash.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 21

Chapter 1 ControlLogix Compute Modules

Replacement Battery Compute modules use a battery to maintain the real-time clock on the module when there’s no
power that is applied to the module. A battery is installed in the module when it ships.

You can replace the battery if necessary. The battery is a Panasonic Type BR1225A coin type
lithium battery. Replacement batteries are commercially available.

Battery life depends on how much time that the module isn't powered. When the
module is installed in a powered ControlLogix chassis, the battery isn't used. Thus,
the life of the battery is greater.

The obvious indication that the battery must be replaced is that the module does
not maintain the correct time of day when the module isn’t powered.

Consider designing your application to check the system date on the module
periodically, and, if the system date is incorrect, alert you that the battery must be
replaced.

To replace the battery, complete these steps.

1. Pull the white plastic battery holder from the back of the module.

If necessary, pull the holder out far enough to use a small screwdriver to pry out the
battery. In this case, insert the screwdriver from the side of the battery that faces
the module printed circuit board.

IMPORTANT There are metal quides that hold the battery holder in place. Do
not attempt to remove the metal guides.

T B O AL T LTI T WROO T S 88

2. Remove the old battery from the holder.

22 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 1 ControlLogix Compute Modules

3. Install a new battery into the holder.

The side of the battery with words and numbers is installed in the side of the holder
with tabs to hold it in place.

Battery Holder Tabs

4, Reinstall the battery holder in the back of the module.
The narrower part of the holder is installed first into the metal guides.

IMPORTANT Make sure that the battery is installed in an orientation so that
the side of the battery with words and numbers faces away from
the PCB.

Y . S A TN WO T Y &\ —

7]

5. Push the battery holder all the way into the back of the module.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 23

Chapter 1 ControlLogix Compute Modules

Notes:

24 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 2

Follow Design and
Engineering Best Practices

Connect Monitor and
Peripherals Before Powerup

Windows Operating System Overview

This chapter describes the embedded Windows® 0S on a ControlLogix® Compute module.

The Compute modules are highly user-configurable and, therefore, let you define how the
module is used as uniquely as necessary to fit your custom application.

We recommend that when you customize the module for your application, you follow not only
the design guidelines of your company, but also general good engineering practices and
behaviors.

For example, it's generally a good practice when you configure an embedded 0S login to
include a System Use notification message. The message can make a user aware of the
conditions within which the module is used.

If you change the embedded Windows 0S default security settings from the out-of-box
conditions, you assume responsibility for any potential issues that arise as a result of the
changes.

We recommend that you apply the same IT policies to the Compute module that your
organization applies to an industrial personal computer (PC).

It is your responsibility to protect and secure the operating system and application layers of
your module from malware and network attacks. This protection includes being aware of any
vulnerabilities, configuring, and keeping applications and operating systems up to date in
accordance with general security best practices.

We recommend that before you apply power to the chassis within which the Compute module
resides, you make all necessary module connections. For example, connect a monitor to the
DisplayPort and peripherals to the USB 3.0 port before you apply power to the module.

Consider the following:

« Werecommend that you connect a monitor to the DisplayPort before you power up the
module.

« Because the module has only one USB 3.0 port, we recommend that you use a USB hub
or keyboard/mouse combination so that you can use both with the module.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 25

Chapter 2 Windows Operating System Overview

Security Settings

26

The embedded Windows 0S on your Compute module is configured per the Microsoft Security
Baseline for Windows 10 with three exceptions that are described at Inactivity Lock and Screen

Saver Settings on page 26.

For detailed information on Microsoft Security Baseline for Windows 10, see: https://
docs.microsoft.com/en-us/windows/security/threat-protection/windows-security-
configuration-framework/windows-security-baselines.

Remember the following as you read this section:

« The security setting descriptions provide information that is considered to be of
particular importance regarding how you use your ControlLogix Compute module.

The descriptions aren't exhaustive descriptions. For complete descriptions, see the
Microsoft Security Baseline referenced previously.

« If you change the embedded Windows 0S default security settings from the out-of-box
conditions, you assume responsibility for any potential issues that arise as a result of
the changes.

Windows 10 0S Updates

We recommend that you update the Windows 0S on your Compute module according to your
organization’s IT policies regarding 0S updates.

Using .NET Framework 3.5

If the application on your Compute module requires .NET Framework 3.5, you must enable the
NET Framework 3.5 feature in the Windows Features tool.

IMPORTANT To enable the .NET Framework 3.5 feature, the module requires access
to an external network.

Inactivity Lock and Screen Saver Settings

The Inactivity Lock and Screen Saver policies settings are the exceptions regarding the
embedded Windows 0S design that differ from the Microsoft Security Baseline for Windows 10.

 Inthe Baseline, the policies are set so that a screen saver launches if no activity occurs
for a specified period. Once the screen saver launches, the password is entered to
access the module.

+ Inthe embedded Windows 0S on the Compute module, a screen saver does not launch
and the account isn't locked. This is the case regardless of the length of time that no
activity occurs on the 0S.

This table describes the changes that were made to disable the inactivity lock and screen
saver policies.

Inactivity Lock and Screen Saver Policy Changes

. . Value in Embedded Windows 0S
Policy Path Policy Name on Compute Module
Computer Configuration\Windows Settings\Security Interactive logon: 0
Settings\Local Policies\Security Options Machine inactivity limit
User Configuration\Administrative Password protect the -
Templates\Control Panel\Personalization screen saver Not Configured
User Configuration\Administrative .
Templates\Control Panel\Personalization Enable screen saver Not Configured

For more information on these policies in the Microsoft Security Baseline for Windows 10, see
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-
settings/interactive-logon-machine-inactivity-limit.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

https://docs.microsoft.com/en-us/windows/device-security/windows-security-baselines
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-security-configuration-framework/windows-security-baselines
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-security-configuration-framework/windows-security-baselines
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-security-configuration-framework/windows-security-baselines
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/interactive-logon-machine-inactivity-limit
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/interactive-logon-machine-inactivity-limit

Chapter 2 Windows Operating System Overview

Password Settings

Password and account lockout settings are tied together because, if an account is locked, a
password is required to unlock it. A password can help to establish and maintain a degree of
security.

IMPORTANT The first time you power up a Compute module, there's no enabled
account. You must configure a login 1D and password. The module
guides you through the process to create them.

After you implement a password, you can change it. However, you can't
recover the password if you forget or lose it.

If you can't log in to your account on a Compute module because you do
not know the password, you must return it to Rockwell Automation to be
reimaged.

When a Compute module is reimaged, it returns to the out-of-box
condition. As a result, all data that was previously on the module is lost.

This table describes some of the password policies.

ControlLogix Compute Module Password Policies

Policy Description

The following apply:

« You must change the password every 60 days.

Password change When 60 days have expired, you're prompted to change the password the next
time that you log in.

« After you change the password, you can't change it again for at least 1day.

Minimum password length The password must be a minimum of 14 characters in length.

The password must include at least one of each of the following:
« Lower case letter

Password complexity « Upper case letter

« Number

« Special character

The password can't be the same as the previous 24 passwords that were used on
the module.

Password reuse

For more information on the Password Palicy in the Microsoft Security Baseline for Windows
10, see https://docs.microsoft.com/en-us/windows/security/threat-protection/security-
policy-settings/password-policy.

Account Lockout Settings

To help maintain a degree of security, an account on a Compute module can be locked. This
table describes some of the account lockout policies.

ControlLogix Compute Module Account Lockout Policies

Policy Description
Password use to unlock account An account is locked after 10 failed attempts to log in.

The following apply:

« Once an account is locked, you can attempt to log in to the account after

Access to a locked account 15 minutes.

« A system administrator can manually unlock the account for a general
user befare 15 minutes expire.

For more information on the Account Lockout Policy in the Microsoft Security Baseline for
Windows 10, see https://docs.microsoft.com/en-us/windows/security/threat-protection/
security-policy-settings/account-lockout-policy.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 27

https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/password-policy
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/password-policy
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/password-policy
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/password-policy
https://docs.microsoft.com/en-us/windows/device-security/security-policy-settings/password-policy
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/account-lockout-policy
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/account-lockout-policy
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/account-lockout-policy
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/account-lockout-policy

Chapter 2

Windows Operating System Overview

28

Network Settings

The Compute module has two Ethernet ports that let the module connect to an EtherNet/IP™
network. This table describes some of the Network policies.

ControlLogix Compute Module Network Policies

Policy Description

Local accounts are denied permission to log on to the module over

Local account access over network the network.

Windows Firewall Windows Firewall policy that local policy manages.

For more information on the Microsoft Security Baseline for Windows 10 policies, see the
following:

» Local account access over network policy - https://docs.microsoft.com/en-us/
windows/security/threat-protection/security-policy-settings/deny-access-to-this-
computer-from-the-network

« Windows Firewall policy - https://docs.microsoft.com/en-us/windows/security/threat-
protection/windows-firewall/basic-firewall-policy-design

Internet Explorer Settings

You can use Internet Explorer (IE), which comes installed on your Compute module. This table
describes some of the IE policies.

ControlLogix Compute Module IE Policies

Policy Description

Restrictions exist to account for unsafe ActiveX controls. The restrictions
include:

« You can't use IE to run outdated controls.

« You can't use IE to run some controls that aren't outdated.

Restrictions on using IE

Java is configured on the module to run with High Safety settings on the
following:

« Trusted Sites Zone

« Intranet Zone

Java configuration

For more information on the IE policies, see https://docs.microsoft.com/en-us/windows/
client-management/mdm/palicy-csp-internetexplorer

Removable Media Settings

You can use removable media with your Compute module. This table lists removable media
policies.

ControlLogix Compute Module Removable Media Policies

Policy Description
Removable media use Removable media that isit'sit is protected by BitLocker.
Autoplay Autoplay is disabled.

For more information about BitLocker write protection options on a USB drive, see
Knowledgebase Technote BitLocker aptions with USB drive when using Windows 10 Compute
module or CompactLogix 5480 Controller. (Login required to view full answer content.)

For more information on the Removable Media Policy in the Microsoft Security Baseline for
Windows 10, see https://docs.microsoft.com/en-us/windows/client-management/change-
default-removal-policy-external-storage-media

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

https://docs.microsoft.com/en-us/windows/device-security/security-policy-settings/deny-access-to-this-computer-from-the-network
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/deny-access-to-this-computer-from-the-network
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/deny-access-to-this-computer-from-the-network
https://docs.microsoft.com/en-us/windows/access-protection/windows-firewall/windows-firewall-with-advanced-security-design-guide
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-firewall/basic-firewall-policy-design
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-firewall/basic-firewall-policy-design
https://docs.microsoft.com/en-us/windows/client-management/mdm/policy-csp-internetexplorer
https://docs.microsoft.com/en-us/windows/client-management/mdm/policy-csp-internetexplorer
https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1091605
https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1091605
https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1091605
https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1091605
https://docs.microsoft.com/en-us/windows/client-management/change-default-removal-policy-external-storage-media
https://docs.microsoft.com/en-us/windows/client-management/change-default-removal-policy-external-storage-media

Chapter 2 Windows Operating System Overview

Remote Desktop Settings

Remote Desktop Protocol (RDP) is a secure, encrypted login service that allows you to connect
to and control your Compute module using a desktop client computer over a network
connection. RDP is disabled by default.

You can configure the System Properties of your Compute module desktop to allow remote
connections. If you intend to use RDP after it's enabled, ensure a secure connection by
adjusting the Local Security Policy and either forcing the connection type from Public to
Private or adding firewall rules that allow Remote Desktop traffic for the Public connection

type.

For more information on how to enable and configure remote desktop access, see

Knowledgebase Technote How do you canfigure remate desktop access to the ControlLagix
Compute Module or CompactLogix 54807 (Login required to view full answer content.)

A Compute module with RDP enabled has a Microsoft Windows® local group policy setting that
requires a password upon connection, even if one was already provided in the Remote Desktop
Connection client. This RDP setting is enabled by default.

For more information on how to disable this setting, see Knowledgebase Technote Is it possible
to save login credentials when making a Remaote Desktop connection to the 1756-CMS compute
madule? (Login required to view full answer content.)

Driver Signature Enforcement

The embedded Windows 0S on the Compute module is designed with the driver signature
enforcement feature enabled. Therefore, you can only use signed drivers that are installed
correctly.

If you install an unsigned driver or incorrectly install a signed driver, it does not work. The
error is indicated in the Device Manager dialog box under A-B Virtual Backplane folder.

;...; Device Manager
Eile Action Xiew Help

e DE HEHZ B EXE
v 4 DESKFEP-HSEOU
< [P A-B Virtual Backplane

L&l A-B Virtual Backplane
3 Batteries
[Compute

e Disk drives

& Display adapters

iy Human Interface Devices
== |DE ATA/ATAP| controllers

@ Mice and other pointing devices
[Monitors
7 Network adapters

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 29

https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1076297
https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1076297

https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1076297
https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1076297
https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1076297
https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1076297
https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1076317
https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1076317
https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1076317

Chapter 2 Windows Operating System Overview

If you double-click the A-B Virtual Backplane folder that is shown, Device status section of the
A-B Virtual Backplane Properties dialog box describes the presence of error code 52.

A-B Virtual Backplane Properties X
Gereral Driver Details Everts

"g] A-B Virtual Backplane

Device type: A-B Virtual Backplane
Manufacturer: Roclkwel Automation

Unknown

Device status

Windows cannot verify the digital signature for the drivers required
forthis device. A recent hardware or software change might have
installed a file that is signed incomectly or damaged, or that might
be malicious software from an unknown source. {Code 52}

\/

Cancel

IMPORTANT To avoid this error, install signed drivers correctly. If you must use a
driver but only have an unsigned version of it, you must first obtain a
signed version of that driver.

30 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 2 Windows Operating System Overview

Implement a BIOS Password 1o implement a BIOS password on a Compute module that uses an embedded Windows 0S,
complete these steps.

IMPORTANT After you implement a BIOS password, you can change it. However, you

can't recover the BIOS password if you forget or lose it.

1756-CMS1B1/A Module BIOS Security Settings

1.

2.

3.

Verify that a keyboard is connected to the module via the USB port.

Apply power to the module, that is, turn on power to the chassis within which the
module resides.

On the keyboard, press the F2 key.

In the BIOS Setup, use the arrow keys on your keyboard to navigate to the Security
menu.

On the Security menu, the following options are available:
- Set Supervisor Password

- Supervisor Password Hint String

- Set User Password

- User Hint String

- Min password length

- Authenticate User on Boot [Disabled/Enabled]

- HDDO2 Password State

- Set HDDO2 User Password

If you want the login procedure to appear whenever the Compute module starts up in
the future, enable the Authenticate User on Boot option.

Press F10 to Save and Exit or use your keyboard to navigate to the Exit menu and select
Exit Saving Changes.

1756-CMS1B1/B Module BIOS Security Settings

1.

2.

3.

Verify that a keyboard is connected to the module via the USB port.

Apply power to the module, that is, turn on power to the chassis within which the
module resides.

On the keyboard, press the Delete key.

In the BIOS Setup, use the arrow keys on your keyboard to navigate to the
Security menu.

On the Security menu, the following options are available:
- Setup Administrator Password

- User Password

- HDD Security Configuration

If you want to set an administrator password that will be required to enter BIOS Setup in
the future, select Setup Administrator Password and follow the prompts.

If you want the BIOS login procedure to appear whenever the Compute module starts up
in the future, select User Password and follow the prompts.

Use the arrow keys to navigate to the Save and Exit page and select Save Changes
and Exit.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 31

Chapter 2 Windows Operating System Overview

Secure Boot

Information on the Module
Can't Be Erased

Data Lost Due to 0S
Corruption Can't Be
Recovered

Series B 1756-CMS1B1 Compute modules support secure boot. Secure boot is a security
standard that helps make sure that a device boots using only software that is trusted by the
Original Equipment Manufacturer (OEM).

To enable or disable secure boot on a Series B 1756-CMS1B1 Compute module that uses the
embedded Windows 0S, complete these steps.

1. Verify that a keyboard is connected to the module via the USB port.

2. Apply power to the module, that is, turn on power to the chassis within which the
module resides.

3. Onthe keyboard, press Delete.

In the BIOS Setup, use the arrow keys on your keyboard to navigate to the Security
menu.

Use the down arrow to select Secure Boot, then press Enter.
Set the Secure Boot option to Enabled or Disabled.

Press F4 to Save and Exit or use your keyboard to navigate to the Save & Exit menu and
select Save Changes and Exit.

Once you load data on a Compute module, it stays on the module permanently. You can't simply
delete the data from the module. In this case, the term data refers to an organization's
intellectual property.

Due to how the Windows 0S manages the hard disk drive memory on the Compute module,
deletion of a file does not remove all data from the hard disk drive.

You can only delete information on a Compute module with a commercially available data
wiping/erasing tool in accordance with your organization's standards that renders the module
permanently inoperable. You can also destroy the module itself to help prevent access to the
data.

If the embedded 0S becomes corrupted, the following apply:

» Any data that was on the module when the 0S became corrupted is lost and can't be
recovered.

« You must return the module to Rockwell Automation, where it's reimaged or replaced.

If Rockwell Automation can reimage the module, it's reimaged to its out-of-box
condition.

32 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 3

Follow Design and
Engineering Best Practices

Connect Monitor and
Peripherals Before Powerup

Linux Operating System Overview

This chapter describes the embedded Linux 0S on a ControlLogix® Compute module.

Compute modules are highly user-configurable and, therefore, let you define how the module
is used as uniquely as necessary to fit your custom application.

We recommend that when you customize the module for your application, you follow not only
the design guidelines of your company, but also general good engineering practices and
behaviors.

For example, it's generally a good practice when you configure an embedded 0S login to
include a System Use notification message. The message can make a user aware of the
conditions within which the module is used.

If you change the embedded Linux OS default security settings from the out-of-box conditions,
you assume responsibility for any potential issues that arise as a result of the changes.

We recommend that you apply the same IT policies to the Compute module that your
organization applies to an industrial personal computer (PC).

We recommend that you visit the Product Compatibility and Download Center (PCDC) for the
latest firmware, associated files (such as AOP, EDS, and DTM), and product release notes.

It is your responsibility to protect and secure the operating system and application layers of
your module from malware and network attacks. This protection includes being aware of any
vulnerabilities, configuring, and keeping applications and operating systems up to date in
accordance with general security best practices.

We recommend that before you apply power to the chassis within which the Compute module
resides, you make all necessary module connections. For example, connect a monitor to the
DisplayPort and peripherals to the USB 3.0 port before you apply power to the module.

If you power up a module with the embedded Linux OS before you connect a monitor, the
monitor typically does not work. In this case, restart the embedded Linux 0S while leaving the
monitor connected to the DisplayPort.

You can restart the 0S via the reset button on the module or by cycling power to the module. If
you use the reset button, the module does not turn off but the embedded 0S performs a reset.

For more information on the reset button, see page 21.
The embedded Linux 0S on your Compute module only uses command lines.

Unless you install a third-party, desktop environment, you can't use a mouse with
a Linux 0S, so there's no reason to connect one to the module.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 33

https://compatibility.rockwellautomation.com/Pages/home.aspx

Chapter 3 Linux Operating System Overview

Security Settings

34

The embedded Linux 0S on a 1756-CMS1C1 or 1756-CMS1D1 module is configured per the Center
for Internet Security (CIS) Debian Linux Benchmark Level 1 profiles with exceptions that are
described on page 37.

For detailed information on CIS Debian Linux Benchmark Level 1 profiles, from now on referred
to as Benchmark, see https://www.cisecurity.org/cis-benchmarks.

Remember the following as you read this section:

» The security setting descriptions provide information that is considered to be of
particular importance regarding how you use your ControlLogix Compute module.

The descriptions aren't exhaustive descriptions, though. For complete descriptions, see
the Benchmark referenced previously.

« Insome policy descriptions, there are references to section numbers and names in the
Benchmark. The numbers and names are as of the Level 1 profile and can change in
future Benchmark versions.

« If you change the embedded Linux OS default security settings from the out-of-box
conditions, you assume responsibility for any potential issues that arise as a result of
the changes.

Password Settings

Password and account lockout settings are tied together because, if an account is locked, a
password is required to unlock it. A password can establish, and help to maintain, a degree of
security on the module.

There's a login the first time that you power up a Compute module that uses an embedded
Linux OS.
« User name is root.

« Password is Rockwell.

After the first login, you may be prompted to change the password.

IMPORTANT After you implement a password, you can change it. However, you can't
recover the password if you forget or lose it.
If you can't log in to your account on a Compute module because you do
not know the password, you must return it to Rockwell Automation to be
reimaged.

When a Compute module is reimaged, it returns to the out-of-box
condition. As a result, all data that was previously on the module is lost.

This table describes some of the password policies.

ControlLogix Compute Module Password Policies

Policy Description

The following apply:

« You must change the password every 90 days.

Password change When 90 days have expired, you're to change the password the next time that you
login.

« After you change the password, you can't change it again for at least 7 days.

Minimum password length | The password must be a minimum of 14 characters in length.

The password must include at least one of each of the following:
« Lower case letter

Password complexity « Upper case letter

« Number

« Special character

The password can't be the same as the previous 5 passwords that were used on

Password reuse the module.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

https://www.cisecurity.org/cis-benchmarks

Chapter 3 Linux Operating System Overview

For more information on password policies in the Benchmark, see the following:
« Section 9.2, Configure PAM (Pluggable Authentication Modules)
» Section 10, User Accounts and Environment

Account Lockout Settings

To help maintain a degree of security, an account on a Compute module can be locked. This
table describes some of the account lockout policies.

ControlLogix Compute Module Account Lockout Policies

Policy Description

Password to unlock account | An account is locked after 10 failed attempts to log in.

The following apply:

« Once an account is locked, you can attempt to log in again after 15 minutes.

« Asystem administrator can manually unlock the account for a general user before
15 minutes expire.

Access to a locked account

Secure Shell Access Settings

Secure Shell (SSH) is a secure, encrypted login service that helps protect the embedded Linux
0S from login by unauthorized users who intend to access sensitive data from the system and
perform harmful actions to the system.

SSH Service on 1756-CMS1C1 and 1756-CMS1D1 Modules

The SSH service is disabled by default on modules with an embedded Debian Linux 0S. To
enable the SSH service, run the appropriate command as root. If you intend to use SSH after
it's enabled, you must start the service and configure IPTables or nftables to permit
connections on the SSH port.

This table describes the command and configuration settings that are required to enable and
configure SSH on a 1756-CMS1CT or 1756-CMS1D1 module.

1756-CMS1C1 and 1756-CMS1D1 Module SSH Server Commands and Settings

Module Run Command As Root |Configuration Settings |Additional Debian Firewall Information
1756-CMSIC1/A |update-rc.d ssh enable |IPTables https://wiki.debian.org/DebianFirewall
1756-CMSIC1/B | systemctl enable ssh nftables https://wiki.debian.org/nftables
1756-CMS1D1 systemctl enable ssh nftables https://wiki.debian.org/nftables

IPTables and nftables are configured by default to DROP all incoming packets except on the
local host. If your application requires network access, IPTables and nftables must be
configured correctly to support the ports and protocols that your application requires.

The PermitRootLogin parameter specifies if root users can use the SSH service to log in. By
default, they can't. This table describes some additional SSH policies.

ControlLogix Compute Module SSH Policies

Policy Description

SSH Root Login is disabled.
Only a system administrator can use it.

If a user is logged into the module via the SSH Root Login, the session is
terminated after 5 minutes without any activity.

SSH Root Login

SSH Session Termination

For more information on SSH settings in the Benchmark, see Section 9.3, Configure SSH.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 35

https://wiki.debian.org/DebianFirewall
https://wiki.debian.org/DebianFirewall
https://wiki.debian.org/nftables
https://wiki.debian.org/nftables
https://wiki.debian.org/nftables
https://wiki.debian.org/nftables

Chapter 3

Linux Operating System Overview

36

SSH Service on 1756-CMSTH1 Modules

The SSH service is enabled and the firewall is open by default on 1756-CMSTH1 modules with an
embedded Red Hat Linux 0S. Use nftables to make modifications to the SSH server
configuration settings. See the Red Hat Network Manager documentation for more
information.

This table describes the command and configuration settings that are required to enable and
configure SSH on a 1756-CMSTH1 module.

1756-CMS1H1 Module SSH Server Commands and Settings

Module Run Command As Root | Configuration Settings |Additional Red Hat Firewall Information
1756-CMS1H1 | nmcli enable ssh nftables Red Hat Network Manager documentation

User Account Access Settings

The su command lets you run commands or shell as another user. However, only users in the
wheel group can execute the su command.

For more information on the su command in the Benchmark, see Section 9.5, Restrict Access
to the su Command.

Access to Core Dumps Settings

A core dump is the memory of an executable program. That is, if the system crashes, the file
provides information about the application conditions when the system crashed.

Core dumps are typically used to determine why a program aborted. We recommend that you
restrict access to core dump files to privileged groups.

For more information on core dumps in the Benchmark, see Section 4.1, Restrict Core Dumps.

Prelink Settings

The Prelink feature changes binaries to improve startup time. This feature is disabled by
default. Consequently, your application can take longer to start up.

We recommend that you do not enable Prelink unless an application explicitly requires it.
Prelinking can increase the vulnerability of the system if a malicious user can compromise a
common library.

For more information on the Prelink feature in the Benchmark, see Section 4.4, Disable Prelink.

Ping Settings

The Linux ping command is a simple utility that is used to troubleshoot network connectivity
issues or check if a remote host is reachable.

By default, the 1756-CMS1C1 or 1756-CMS1D1 Module IP Tables are configured to allow outbound
ping requests and block all inbound ping requests. To enable all inbound ping requests to the
Compute Module, see Knowledgebase Technote, 1756-CMS: Enabling ping on Linux based
modules. (Login required to view full answer content.)

By default, the 1756-CMS1H1 Module IP Tables are configured to allow both outbound and
inbound ping requests.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1085362
https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1085362

Chapter 3 Linux Operating System Overview

Settings Not Implemented On the Module

Some settings in the CIS Debian Linux Benchmarks aren’t implemented in the embedded Linux
0S. This table describes the settings that aren't implemented on the embedded Linux 0S in
out-of-box condition.

Settings Not Implemented in the Embedded Linux 0S

Policy

Description

Network Time Protocol (NTP)
configuration.

NTP lets system clocks across various systems synchronize via a highly accurate time source. This requires a knowledge of
each NTP server in the system.
NTP is disabled.

Specific systems that are granted or
denied access to the module.

These files are used to help make sure that only authorized systems can access the module:

« The /etc/host.allow file specifies the IP addresses from which systems can access to the module.

« The /etc/host.deny file specifies the IP addresses from which systems are denied access to the module.
Neither file is configured.

Warning banners as part of the login
procedure.

Warning banners that are part of the login procedure can help prosecute unauthorized users who access the module with
malicious intent. They can also hide detailed system information from unauthorized users attempting to inflict damage to the
system.

By default, before you can log into the module, the /etc/issue file displays the warning message, “Autharized uses only. All
activity may be monitored and reported.”

However, the /etc/motd file isn't set in the 1756-CMSICT or 1756-CMS1D1 modules. This file defines the warning message that is
displayed after a successful login. We recommend that you add this warning banner to your module’s login procedure.

|Pv6 support

While IPv6 is enabled on 1756-CMS1HT modules, by default, the 1756-CMS1C1 or 1756-CMS1D1 module IPv6 settings aren't enabled
because IPv6 isn't recommended under CIS Debian Benchmark guidelines.

Sends logs to a remote log host.

The rsyslog utility is used to send logs that it gathers to a remote log host running syslegd (8) or to receive messages from
remote hosts.
The rslog utility isn't configured.

Rotating log files reqularly.

The logrotate file can be configured to rotate log files that the rsysleg utility creates to avoid filling up the system with logs or
making the log too large to manage.
The logrotate uses the default configuration.

List of users and group permitted
access via SSH

There's no list of users or groups that can access the embedded 0S via SSH.

Additional Considerations

For more information, see the following sections of the Benchmark. The section names and
numbers are as of the Level 1 profile.

« NTP - Section 6.5, Configure Network Time Protocol (NTP)
« Systems Granted/Denied Access - As follows:
- Section 7.4.2 Create/etc/hosts.allow
- Section 7.4.4, Create /etc/hosts.deny
« Warning Banners - Section 11, Warning Banners
« Rotate log files via logrotate - Section 8.4, Configure logrotate
« rsyslog Utility - Section 8.2.5, Configure rsyslog to Send Logix to Remote Log Host
» User or group access via SSH - Section 9.3.13, Limit Access via SSH

The following applies to a Compute module with an embedded Linux 0S:

« Torunan application that accesses the backplane as a non-root user, the user that
runs the application must be added to the ocxdevice group.

For example, if the user engineer must be added, run the following command: usermod
-a -G ocxdevice engineer.

The change takes effect, the next time the user logs into the embedded OS.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 37

Chapter 3 Linux Operating System Overview

Implement a BIOS Password 1o implement a BIOS password on a Compute module that uses an embedded Linux 0S,
complete these steps.

IMPORTANT After you implement a BIOS password, you can change it. However, you

can't recover the BIOS password if you forget or lose it.

1756-CMS1C1/A Module BIOS Security Settings

1.

2.

3.

Verify that a keyboard is connected to the module via the USB port.

Apply power to the module, that is, turn on power to the chassis within which the
module resides.

On the keyboard, press the F2 key.

In the BIOS Setup, use the arrow keys on your keyboard to navigate to the Security
menu.

On the Security menu, the following options are available:
- Set Supervisor Password

- Supervisor Password Hint String

- Set User Password

- User Hint String

- Min password length

- Authenticate User on Boot [Disabled/Enabled]

- HDDO2 Password State

- Set HDDO2 User Password

If you want the login procedure to appear whenever the Compute module starts up in
the future, enable the Authenticate User on Boot option.

Press F10 to Save and Exit or use your keyboard to navigate to the Exit menu and select
Exit Saving Changes.

1756-CMS1C1/B, 1756-CMS1D1 and 1756-CMS1H1 Module BIOS Security
Settings

1.

2.

3.

Verify that a keyboard is connected to the module via the USB port.

Apply power to the module, that is, turn on power to the chassis within which the
module resides.

On the keyboard, press the Delete key.

In the BIOS Setup, use the arrow keys on your keyboard to navigate to the
Security menu.

On the Security menu, the following options are available:
- Setup Administrator Password

- User Password

- HDD Security Configuration

If you want to set an administrator password that will be required to enter BIOS Setup in
the future, select Setup Administrator Password and follow the prompts.

If you want the BIOS login procedure to appear whenever the Compute module starts up
in the future, select User Password and follow the prompts.

Use the arrow keys to navigate to the Save and Exit page and select Save Changes
and Exit.

38 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 3 Linux Operating System Overview

Secure Boot

Information on the Module
Can't Be Erased

Data Lost Due to 0S
Corruption Can't Be
Recovered

The 1756-CMS1D1 and 1756-CMS1H1 Compute modules support secure boot. Secure boot is a
security standard that helps make sure that a device boots using only software that is trusted
by the Original Equipment Manufacturer (OEM).

To check whether your system has Secure Boot enabled or disabled, run the following
command: /usr/bin/mokutil --sh-state

The system will display SecureBoot enabled if Secure Boot is enabled.
The system will display Failed to read SecureBoot if Secure Boot is disabled.

To disable or enable secure boot on a 1756-CMS1D1 and 1756-CMS1H1 Compute module,
complete these steps:

1. Run one of the following commands:
- Jusr/bin/mokutil --disable-validation to disable Secure Boot.
- lusr/bin/mokutil --enable-validation to enable Secure Boot.
The system prompts you for a password.
2. Enter a temporary password and confirm the password when prompted.
Tip: Ensure you remember this temporary password because you are

required to enter it when you first restart the system after changing the
Secure Boot state.

3. Reboot the system.
The system restarts and displays the MOK management screen.
Press any key to perform MOK management.
Select Change Secure Boot state.

Enter each requested character of your chosen password to confirm the change,
pressing Return/Enter after each character.

7. When prompted, select Yes.
The system prompts you to restart.
8. Reboot the system.

Once you load data on a Compute module, it stays on the module permanently. You can't simply
delete the data from the module. In this case, the term data refers to an organization's
intellectual property.

Due to how the Linux 0S manages the hard disk drive memory on the Compute module,
deletion of a file does not remove all data from the hard disk drive.

You can only delete information on a Compute module with a commercially available data
wiping/erasing tool in accordance with your organization's standards that renders the module
permanently inoperable. You can also destroy the module itself to help prevent access to the
data.

If the embedded 0S becomes corrupted, the following apply:

+ Any data that was on the module when the 0S became corrupted is lost and can't be
recovered.

« You must return the module to Rockwell Automation, where it's reimaged or replaced.

If Rockwell Automation can reimage the module, it's reimaged to its out-of-box
condition.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 39

Chapter 3 Linux Operating System Overview

Notes:

40 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter ll'

API Architecture

Application Development

This chapter describes the ControlLogix® Compute module API, including how to use the APl to
develop applications the modules that use the Windows® 0S or Linux 0S.

The Linux or Windows platform that is supplied with the ControlLogix Compute module already
has the APl shared libraries and device driver installed. The APl functions are the same for
Linux and Windows.

The APl lets you access the ControlLogix backplane and special devices that the ControlLogix
Compute module supports. The API consists of the following components:

« Backplane device driver
 Backplane interface engine
« Backplane interface API library

You must install the components on a system to run an application that is developed for the
API.

The backplane device driver allocates device resources, directly manipulates hardware
devices, and fields device interrupts. The BPIE accesses the device driver.

The BPIE is provided as a 32-bit or 64 bit DLL for the Windows OS or as a shared library for the
Linux 0S. The BPIE isn't a standalone process; it requires a host application. This design lets
the host application that is run in the same process space as the BPIE. The result is maximum
performance.

Each module can only have one host application. The BPIE is automatically started when the
host application accesses the host API.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 [

Chapter &4 Application Development

This figure shows the relationships between these components.

API Architecture

Chassis Backplane

’ ASIC ‘

Misc. Devices:
) . j E « Aipha Display
antrtoll_lfglx : « User Indicators
ontroller . « Status Indicators
. Backplane Device « Switches

Driver

BPIE

Host API Library

Host Application

Host Process

CIP Messaging The BPIE contains the functionality necessary to perform CIP™ messaging over the
ControlLogix backplane. The BPIE implements the following CIP components and objects:

Communications Device (CD)
Unconnected message manager (UCMM)
Message router object (MR)

Connection manager object (CM)
Transports

Identity object

ICP object

Assembly Object (with APl access)

For more information about these components, refer to the CIP Specification available at the
following: https://www.odva.org/

All connected data exchange between the application and the backplane occurs through the
Assembly Object by using functions that are provided by the API.

The API functions let you complete the following:

Register or unregister the abject.

Accept or deny Class 1scheduled connection requests.
Access scheduled connection data.

Service unscheduled messages.

42 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

https://www.odva.org/

Chapter &4 Application Development

API Library
Already Installed

Install the API
Development Files (SDK)

Remove the SDK

Four-character
Alphanumeric Display

API Library

The ControlLogix Compute module API library files and device driver are already installed in
the embedded 0S when you receive the module. You must install only the user application.

You can install the ControlLogix Compute module SDK on a computer that is used to develop an
application that uses the API. The SDK includes documentation, sample source code, header
files, and API libraries.

For Windows SDK, to install the API development files and documentation, double-click the SDK
installation file (56Comp_sdk_setup_vx_x_x.msi). Follow the prompts to select the installation
path and complete the installation.

The Linux SDK is supplied as a compressed tar file. You extract the files to a suitable directory
toinstall it.

You can download the SDK installation files at the Rockwell Automation Product Compatibility
and Download Center available at: rok.auto/pcdc.

To remove the Windows SDK from the system, complete these steps.
1. From the Control Panel, click Programs and Features.
2. Select 56Comp Backplane SDK from the list.
3. Select Uninstall.
4. Remove all components of the API by following the prompts.

The ControlLogix Compute module includes a 4-character alphanumeric display. This table
lists the messages that are displayed to indicate the system status.

Display Messages

Message Description

<blank> or POST codes gies\gg;)drlver hasn't yet been started (or application has written to the
INIT Device driver has successfully started

0K BPIE has successfully started

- BPIE has stopped (host application has exited)

An application can use the OCXcip_SetDisplay function to display any desired 4-character
message on the display.

The APl library supports industry standard programming languages. The API library is supplied
as a 32-bit or 64-bit DLL that is linked to your application at runtime.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 43

https://compatibility.rockwellautomation.com/Pages/home.aspx
https://compatibility.rockwellautomation.com/Pages/home.aspx
https://compatibility.rockwellautomation.com/Pages/home.aspx

Chapter &4 Application Development

Callmg Convention You use the C programming language syntax to specify the API library functions. The standard
Win32 stdcall calling convention is used for all APl functions. This calling convention lets
applications be developed in other standard programming languages and also to achieve
compatibility between different C implementations. The function names are exported from the
DLL in undecorated format to simplify access from other programming languages.

Header Files

Two header files are provided in the SDK. These header files contain API function declarations,
data structure definitions, and miscellaneous constant definitions. The header files are in
standard C format.

IMPORTANT The header files include some functions that aren't documented in this
guide. These functions are deprecated and can't be used. They remain
in the API for legacy applications.

The deprecated functions are listed on page 44.

Deprecated Functions

These functions appear in the header files but aren’t documented in this publication:
« 0CXcip_ClientOpen (not supported)
» 0CXcip_SetEmbeddedEDSFile
« 0CXcip_SetUserLED (superseded by OCXcip_SetLED)
« 0CXcip_GetUserLED (superseded by OCXcip_GetLED)
« 0CXcip_SetLED3 (superseded by OCXcip_SetLED)
« 0CXcip_GetLED3 (superseded by OCXcip_GetLED)
« OCXcip_RegisterFlashUpdateRtn (not supported)
« 0CXcip_RegisterResetParamReqRtn (not supported)
« OCXcip_RegisterShutdownRegRtn (not supported)
« 0CXcip_RegisterResetButtonRtn (not supported)
« 0CXcip_GetTemperature (not supported)
« 0CXcip_ReadSRAM (not supported)
« OCXcip_WriteSRAM (not supported)
« 0CXcip_DataTableRead (superseded by OCXcip_AccessTagData)
« OCXcip_DataTableWrite (superseded by OCXcip_AccessTagData)

« 0CXcip_InitTagDefTable, 0CXcip_UninitTagDefTable, 0CXcip_TagDefine, and
0CXcip_TagUndefine (superseded by OCXcip_CreateTagDbHandle,
0CXcip_BuildTagDb, etc.)

« 0OCXcip_DtTagRd and OCXcip_DtTagWr (superseded by OCXcip_AccessTagDataDb)
« 0CXcip_RdldStatusDefine (superseded by OCXcip_GetDeviceldStatus)
« OCXcip_PLC5GetIDHost (legacy, undocumented)

« 0CXcip_ReadSectionPLC5 (legacy, undocumented)

« 0CXcip_MLGXProtTypedRead (legacy, undocumented)

« 0CXcip_MLGXProtTypedWrite (legacy, undocumented)

« 0CXcip_MLGXReadModWrite (legacy, undocumented)

« 0CXcip_MLGX14ProtTypedRead (legacy, undocumented)

« 0CXcip_MLGX14ProtTypedWrite (legacy, undocumented)

« 0CXcip_MLGX14ReadModWrite (legacy, undocumented)

« OCXcip_GetSerialConfig (not supported)

« 0CXcip_SetSerialConfig (not supported)

L Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter &4 Application Development

Host Application

Sample Code
Sample source files are supplied with the SDK to provide example applications.

Import Library

During development, the application must be linked with an import library that provides
information about the functions that are contained within the DLL. An import library
compatible with the Microsoft® linker is provided.

IMPORTANT Importing a library only applies to modules that use the embedded

Windows 0S.
API Files
This table lists the supplied AP files that are required for development.
API File Names
File Name Description
ocxbpapi.h Main APl include file
ocxtagdb.h Include file for tag access function
ocxbpapi.lib APl Import library (Microsoft COFF format)

IMPORTANT APl files are only required on modules that use the embedded
Windows 0S.

Another process, called the host application, must host the BPIE. The host application has
access to the entire range of API functions. Because it runs locally and in the same process
space as the BPIE, it achieves the best performance possible.

The BPIE starts automatically when the host application calls the 0CXcip_Open function.

Only one host application can run at any one time on a Compute module. However, the host AP
is thread safe, so that multi-threaded host applications can be developed.

Where necessary, the API functions acquire a critical section before accessing the BPIE. In this
way, access to critical functions is serialized. If the critical section is in use by another thread,
a thread is blocked until it's freed.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 45

Chapter &4 Application Development

Notes:

46 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5

Backplane API Library Functions

This table lists the Backplane API library functions. Details for each function are presented in
subsequent sections.

Library Functions
Category Name Description Page
0CXcip-Open Starts the BPIE and initializes access to the AP 49
Initialization 0CXcip_OpenNB Provides access to non-backplane functions 50
0CXcip_Close Terminates access to the API 50
Registers all instances of the Assembly Object, and lets other devices in the CIP™ system to
0CXcip_RegisterAssemblyObj establish connections with the object. Callbacks are used to handle connection and service 51
Object Registration requests.
00 Uogisrksomtyty | Brers et sent et il reusyeen e .
Callback 0CXcip_RegisterFatalFaultRtn Registers a fatal fault handler routine 52
Registration 0CXcip_RegisterResetRegRtn Registers a reset request handler routine 53
0CXcip_Write Connected Writes data to a connection 53
0CXcip_ReadConnected Reads data from a connection 54
[T:?;nnsefztfd Data 0CXcip_ImmediateQutput Transmit output data immediately 54
0CXcip_WaitForRxData Blocks until new data is received on connection 55
0CXcip_WriteConnectedimmediate Update and transmit output data immediately 55
0CXcip_AccessTagData Read and write Logix controller tag data 56
0CXcip_AccessTagDataAbortable Abortable version of 0CXcip_AccessTagData 58
0CXcip_CreateTagDbHandle Creates a tag database handle. 58
0CXcip_DeleteTagDbHandle Deletes a tag database handle and releases all associated resources. 59
0CXcip_SetTagDbOptions Sets various tag database options. 60
0CXcip_BuildTagDb Builds or rebuilds a tag database. 61
Tag Access 0CXcip_TestTagDbVer Er?err{ggrgattha%glsj‘rer\v;r;tsdcer\gacteegrogram version with the device program version read when 62
0CXcip_GetSymbolinfo Get symbol information. 63
0CXcip_GetStructinfo Get structure information. 64
0CXcip_GetStructMbrinfo Get structure member information. 65
0CXcip_GetTagDbTagInfo Get information for a fully qualified tag name 66
0CXcip-AccessTagDataDb Read and/or write multiple tags 67
0CXcip_SetTagAccessConnSize Configure connection size used to access tags 68

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

47

Chapter 5

Backplane API Library Functions

Library Functions (Continued)

Category Name Description Page
0CXcip_GetDeviceldObject Reads a device's identity object. 69
0CXcip_GetDevicelCPObject Reads a device's ICP abject 70
0CXcip_GetDeviceldStatus Read a device's status word. Vil
0CXcip_GetExDevObject Read a device's extended device object 13
0CXcip_GetWCTime Read the WallClockTime from a controller. 74
0CXcip_SetWCTime Set a controller's WallClockTime. 76
0CXcip_GetWCTimeUTC Read a controller's WallClockTime in UTC. 78

Messaging 0CXcip_SetWCTimeUTC Set a controller's WallClockTime in UTC. 80
0CXcip-PLC5TypedRead Perform data typed reads from PLC-5° 81
0CXcip_PLC5TypedWrite Perform data typed writes to PLC-5 82
0CXcip_PLC5WordRangeWrite Perform word writes to PLC-5 84
0CXcip_PLC5WordRangeRead Perform word reads from PLC-5 85
0CXcip_PLC5ReadModWrite Perform bit level writes to PLC-5 87
0CXcip_SLCProtTypedRead Perform data typed reads from SLC™ 88
0CXcip_SLCProtTypedWrite Perform data typed writes from SLC 90
0CXcip_SLCReadModWrite Perform bit level writes to SLC 92
0CXcip_GetldObject Returns data from the module’s Identity Object 94
0CXcip_SetldObject Lets the application customize certain attributes of the identity object 95
0CXcip_GetActiveNodeTable Egiil:lrg;tohdeureusmber of slots in the local rack and identifies the slots are occupied by 95
OCHcip_MsgResponse 0CY.CI DR RESPONSE from heservics roc calback outne, | %
0CXcip_GetVersioninfo Get the API, BPIE, and device driver version information 97
0CXcip_SetLED Set the state of the LED 97
0CXcip_GetLED Get the state of the LED 98

Miscellaneous 0CXcip_SetDisplay Set the state of the display 98
0CXcip_GetDisplay Get the currently displayed string 98
0CXcip_GetSwitchPosition Get the state of the 3-position switch 99
0CXcip_SetModuleStatus Lets an application set the status of the module’s status LED indicator. 99
0CXcip_ErrorString Returns a text error message that is associated with the error code errcode. 100
0CXcip_Sleep Delays for approximately msdelay milliseconds. 100
0CXcip_CalculateCRC Computes a 16-bit CRC for a range of data 100
0CXcip_SetModuleStatusWord Lets an application set the 16-bit status attribute of the module’s Identity Object. 101
0CXcip_GetModuleStatusWord ILdegﬁt?t?/ %%?ggstion read the current value of the 16-bit status attribute of the module’s 101
connect_proc Passes to the APl in the OCXcip_RegisterAssemblyObj function and called when a Class 1 102

scheduled connection request is made for the registered object instance.
reselrequest_proc G Gt Toseues a madus oot requeet denty Ojec rese servceh - | 18
48 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

Initialization Function This section describes the Initialization functions.
Category
0CXcip_Open
Syntax int 0CXcip_Open(OCXHANDLE *apiHandle);
Parameters apiHandle Pointer to variable of type OCXHANDLE
0CXcip_Open acquires access to the host APl and sets apiHandle to a unique ID that the application uses in subsequent functions.
Description This function must be called before any of the other API functions can be used.
IMPORTANT: Once the API has been opened, 0CXcip_Close must always be called before exiting the application.
0CX_SUCCESS BPIE has started successfully and APl access is granted
OCX_ERR_REQPEN APl is already open (host application can already be running)
OCX_ERR_NODEVICE Backplane device driver couldn't be accessed
Return Value . . S .
OCX_ERR_NODEVICE is returned if the backplane device driver isn't properly installed or hasn't been started.
OCX_ERR_MEMALLOC Unable to allocate resources for BPIE
OCX_ERR_TIMEOUT BPIE did not start
OCXHANDLE api Handl e;
i f (OCXcip_Open(&api Handl e)! = OCX_SUCCESS)
{
printf(“Open failed!'\n");
Example }
el se
{
printf(“Qpen succeeded\n”);
}

For more information, see 0CXcip_Close on page 50.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 49

Chapter 5 Backplane API Library Functions
0CXcip_OpenNB
Syntax int 0CXcip_OpenNB(OCXHANDLE *apiHandle);
Parameters apiHandle Pointer to variable of type OCXHANDLE
0CXcip_OpenNB acquires access to the APl and sets apiHandle to a unique ID that the application uses in subsequent functions. This
function must be called before any of the other API functions can be used.
Most applications use OCXcip_Open instead of this function. This version of the open function gives access to a limited subset of API
functions that aren't related to the ControlLogix® backplane. This can be useful in some situations if an application separate from the
host application needs access to a device such as the alphanumeric display, for example.
An application must use either 0CXcip_Open or 0CXcip_OpenNB but never both.
The API functions that can be accessed after calling 0CXcip_OpenNB are the following:
« 0CXcip_Close
« 0CXcip_GetDisplay
e « 0CXcip_GetldObject
Description « OCXcip_GetLED
« 0CXcip_GetModuleStatus
« 0CXcip_GetSwitchPosition
« 0CXcip_GetVersionInfo
« 0CXcip_SetDisplay
« OCXcip_SetLED
« 0CXcip_SetModuleStatus
« 0CXcip_Sleep
IMPORTANT: Once the API has been opened, 0CXcip_Close must always be called before exiting the application.
0CX_SUCCESS BPIE has started successfully and APl access is granted
Return Value - — -
OCX_ERR_REGPEN APl is already open (host application can already be running)
OCXHANDLE api Handl e;
i f (OCXci p_OpenNB(&api Handl e)! = OCX_ SUCCESS)
{
printf(“Open failed!'\n");
Example }
el se
{
printf(“Qpen succeeded\n”);
}
For more information, see the following:
» 0CXcip_Open on page 49.
» 0CXcip_Close on page 50.
0CXcip_Close
Syntax int 0CXcip_Close(OCXHANDLE apiHandle);
Parameters apiHandle Handle returned by previous call to 0CXcip_Open
Description This function is used by an application to release control of the API. apiHandle must be a valid handle that is returned from 0CXcip_Open.
IMPORTANT Once the API has been opened, this function must always be called before exiting the application.
0CX_SUCCESS APl was closed successfully
Return Value -
OCX_ERR_NOACCESS apiHandle does not have access
OCXHANDL E api Handl e;
Example . .
OCXci p_Cl ose (api Handl e) ;

50

For more information, see 0CXcip_Open on page 49.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

Object Registration
Function Category

This section describes the Object Registration functions.

0CXcip-RegisterAssemblyObj

0CXcip_RegisterAssemblyQbj(
OCXHANDLE apiHandle,
: OCXHANDLE *objHandle,
Syntax int DWORD reg_param,
OCXCALLBACK (*connect_proc)(),
OCXCALLBACK (*service_proc)));
apiHandle Handle returned by previous call to 0CXcip_Open
obiHandle Pointer to variable of type OCXHANDLE. On successful return, this variable contains a value that
) identifies this object.
Parameters req_param Value that is passed back to the application as a parameter in theconnect_proc and service_proc
9-P callback functions.
connect_proc Pointer to callback function to handle connection requests
service_proc Pointer to callback function to handle service requests
This function is used by an application to register all instances of the Assembly Object with the API. The object must be registered
before a connection can be established with it. apiHandle must be a valid handle that is returned from 0CXcip_Open.
reg_param is a value that is passed back to the application as a parameter in the connect_proc and service_proc callback functions.
The application can use this to store an index or pointer. It isn't used by the API.

Description connect_proc is a pointer to a callback function to handle connection requests to the registered object. This function is called by the
backplane device driver when a Class 1scheduled connection request for the object is received. It's also called when an established
connection is closed.
service_prac is a pointer to a callback function that handles service requests to the registered object. This function is called by the
backplane device driver when an unscheduled message is received for the object.
0CX_SUCCESS Object was registered successfully
OCX_ERR_NOACCESS apiHandle does not have access

Return Value - -

OCX_ERR_BADPARAM connect_proc or service_proc is NULL

OCX_ERR_ALREADY_REGISTERED |Object has already been registered

OCXHANDLE api Handl e;

OCXHANDL E obj Handl e;

MY _STRUCT nystruct;

i nt rc;

OCXCALLBACK MyConnect Proc(OCXHANDLE, OCXClI PCONNSTRUC *) ;

Example

OCXCALLBACK MySer vi cePr oc(OCXHANDLE, OCXCl PSERVSTRUC *);
/1l Register all instances of the assenbly object

rc = OCXci p_Regi st er Assenbl yObj (api Handl e, &obj Handl e,

(DWORD) &mystruct, MyConnect Proc, MyServiceProc);

if (rc !'= OCX_SUCCESS)

printf(“Unable to register assenbly object\n”);

For more information, see the following:

» 0CXcip_UnregisterAssembly0bj on page 52
« connect_proc on page 102

« service_proc on page 104

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 51

Chapter 5

Backplane API Library Functions

0CXcip_UnregisterAssemblyObj

0CXcip_UnregisterAssemblyObj(

Syntax int OCXHANDLE apiHandle,
OCXHANDLE objHandle);
Parameters ap!HandIe Handle return.ed by previous c.aII to OCXcip_Open
objHandle Handle for object to be unregistered
This function is used by an application to unregister all instances of the Assembly Object with the API. Any current connections for the
Description object that is specified by objHandle are terminated.
P apiHandle must be a valid handle that is returned from 0CXcip_Open. objHandle must be a handle that is returned from
0CXcip_RegisterAssemblyObj.
0CX_SUCCESS Object was unregistered successfully
Return Value OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_INVALID_OBJHANDLE objhandle is invalid
OCXHANDLE api Handl e;
OCXHANDLE obj Handl e;
Example . . .
/1 Unregister all instances of the object
OCXci p_Unr egi st er Assenbl yObj (api Handl e, obj Handl e);
For more information, see O0CXcip_RegisterAssemblyObj on page 51.
Speclal Callback This section describes the Callback Registration functions.

Registration Function

Category

0CXcip_RegisterFatalFaultRtn

Syntax

int

0CXcip_RegisterFatalFaultRtn(
OCXHANDLE apiHandle,
OCXCALLBACK (*fatalfault_proc)))

Parameters

apiHandle

Handle returned by previous call to 0CXcip_Open

fatalfault_proc

Pointer to fatal fault callback routine

Description

This function is used by an application to register a fatal fault callback routine. Once registered, the backplane device driver calls
fatalfault_proc if a fatal fault condition is detected.
apiHandle must be a valid handle that is returned from 0CXcip_Open. fatalfault_proc must be a pointer to a fatal fault callback

function.

A fatal fault condition results in the module being taken offline; that is, all backplane communications halt. The application can
register a fatal fault callback to perform recovery, safe state, or diagnostic actions.

Return Value

0CX_SUCCESS

Routine was registered successfully

0OCX_ERR_NOACCESS

apiHandle does not have access

Example

OCXHANDLE
/1 Register a fatal

api Handl e;
fault handl er

OCXci p_Regi sterFat al Faul t Rt n(api Handl e, fatal fault_proc);

52

For more information, see fatalfault_proc on page 105.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip_RegisterResetReqRtn

0CXcip_RegisterResetReqgRtn(
Syntax int OCXHANDLE apiHandle,
OCXCALLBACK (*resetrequest_proc)))
apiHandle Handle returned by previous call to 0CXcip_Open
Parameters - -
resetrequest_proc Pointer to reset request callback routine
This function is used by an application to register a reset request callback routine. Once registered, the backplane device driver calls
resetrequest_proc if a module reset request is received.
apiHandle must be a valid handle that is returned from OCXcip_Open. resetrequest_proc must be a pointer to a reset request callback
Description function.
If the application does not register a reset request handler, receipt of a module reset request results in a software reset (that is,
restart) of the module. The application can register a reset request callback to perform an orderly shutdown, reset special hardware,
or to deny the reset request.
0CX_SUCCESS Routine was registered successfully
Return Value -
OCX_ERR_NOACCESS apiHandle does not have access
OCXHANDLE api Handl e;
Example /'l Register a reset request handl er

OCXci p_Regi st er Reset ReqRt n(api Handl e, resetrequest _proc);

For more information, see resetrequest_proc on page 106.

Connected Data Transfer This section describes the Connected Data Transfer functions.

Function Category
0CXcip—Write Connected
0CXcip_WriteConnected(
OCXHANDLE apiHandle,
. OCXHANDLE connHandle,
Syntax int BYTE *dataBuf,
WORD offset,
WORD dataSize)
apiHandle Handle returned by previous call to 0CXcip_Open
connHandle Handle of open connection
Parameters dataBuf Pointer to data to be written
offset Offset of byte to begin writing
dataSize Number of bytes of data to write
This function is used by an application to update data being sent on the open connection specified by connHandle.
apiHandle must be a valid handle that is returned from 0CXcip_Open. connHandle must be a handle that is passed by the
Description connect_proc callback function.
offset is the offset into the connected data buffer to begin writing. dataBuf is a pointer to a buffer containing the data to be written.
dataSize is the number of bytes of data to be written.
0CX_SUCCESS Data was updated successfully
Return Value OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_BADPARAM connHandle or offset/dataSize is invalid
OCXHANDLE api Handl e;
OCXHANDL E connHandl e;
Example BYTE buf fer[128];

/1 Wite 128 bytes to the connected data buffer
OCXci p_W it eConnect ed(api Handl e, connHandl e, buffer, 0, 128);

For more information, see 0CXcip_ReadConnected on page 54.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 53

Chapter 5

Backplane API Library Functions

0CXcip_ReadConnected

0CXcip_ReadConnected(
OCXHANDLE apiHandle,
. OCXHANDLE connHandle,
Syntax int BYTE *dataBuf,
WORD offset,
WORD dataSize);
apiHandle Handle returned by previous call to 0CXcip_Open
connHandle Handle of open connection
Parameters dataBuf Painter to buffer to receive data
offset Offset of byte to begin reading
dataSize Number of bytes to read
This function is used by an application to read data being received on the open connection specified by connHandle.
apiHandle must be a valid handle that is returned from 0CXcip_Open. connHandle must be a handle that is passed by the
connect_proc callback function.
Description offset is the offset into the connected data buffer to begin reading. dataBuf is a pointer to a buffer to receive the data. dataSize is the
number of bytes of data to be read.
When a connection has been established with a ControlLogix controller, the first 4 bytes of received data are processor status and
are automatically set by the controller. The first byte of data appears at offset 4 in the receive data buffer.
0CX_SUCCESS Data was read successfully
Return Value OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_BADPARAM connHandle or offset/dataSize is invalid
OCXHANDLE api Handl e;
OCXHANDLE connHandl e;
Example BYTE buffer[128];
/1 Read 128 bytes fromthe connected data buffer
OCXci p_ReadConnect ed(api Handl e, connHandl e, buffer, 0, 128);
For more information, see 0CXcip_Write Connected on page 53.
0CXcip_ImmediateQutput
0CXcip_ImmediateQutput(
Syntax int OCXHANDLE apiHandle,
OCXHANDLE connHandle,
apiHandle Handle returned by previous call to 0CXcip_Open
Parameters -
connHandle Handle of open connection
This function causes the output data of an open connection to be queued for transmission immediately, rather than waiting for the
Description next scheduled transmission (based on the RPI). It's equivalent to the ControlLogix 0T instruction.
P apiHandle must be a valid handle that is returned from OCXcip_Open. connHandle must be a handle that is passed by the
connect_proc callback function.
0CX_SUCCESS Data was received
Return Value OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_BADPARAM connHandle is invalid
OCXHANDLE api Handl e;
OCXHANDLE connHandl e;
BYTE buffer[128];
Example .
/1 Update the output data and transnit now
OCXci p_WiteConnect ed(api Handl e, connHandl e, buffer, 0, 128);
OCXci p_I medi at eQut put (api Handl e, connHandl e);
For more information, see OCXcip_Write Connected on page 53.
b4 Rockwell Automation Publication 1756-UMO03G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip-WaitForRxData

IMPORTANT This function isn't supported in Windows® 0S.

0CXcip_WaitForRxData(
. OCXHANDLE apiHandle,
Syntax int OCXHANDLE connHandle,
int timeout);
apiHandle Handle returned by previous call to 0CXcip_Open
Parameters connHandle Handle of open connection
timeout Timeout in milliseconds
This function blocks the calling thread until data is received on the open connection that is specified by connHandle. If the timeout
Description expires before data is received, the function returns 0CX_ERR_TIMEQUT.
P apiHandle must be a valid handle that is returned from 0CXcip_Open. connHandle must be a handle that is passed by the
connect_proc callback function.
0CX_SUCCESS Data was received
Return Value OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_BADPARAM connHandle is invalid
OCX_ERR_TIMEOUT The timeout expired before data was received
OCXHANDLE api Handl e;
OCXHANDLE connHandl e;
Example . .
/1 Synchronize with the controller scan
OCXci p_Wai t For RxDat a(api Handl e, connHandl e, 1000);
For more information, see 0CXcip_ReadConnected on page 54.
0CXcip-WriteConnectedimmediate
0CXcip_WriteConnectedimmediate(
OCXHANDLE apiHandle,
. OCXHANDLE connHandle,
Syntax int BYTE *dataBuf,
WORD offset,
WORD dataSize);
apiHandle Handle returned by previous call to 0CXcip_Open
connHandle Handle of open connection
Parameters dataBuf Pointer to data to be written
offset Offset of byte to begin writing
dataSize Number of bytes of data to write
This function is used by an application to update data being sent on the open connection specified by connHandle. This function
differs from the 0CXcip_WriteConnected function in that it bypasses the normal image-integrity mechanism and transmits the
updated data immediately. This is faster and more efficient than 0CXcip_WriteConnected, but it does not guarantee image integrity.
apiHandle must be a valid handle that is returned from 0CXcip_Open. connHandle must be a handle that is passed by the
connect_proc callback function.
Description offset is the offset into the connected data buffer to begin writing. dataBuf is a pointer to a buffer containing the data to be written.
dataSize is the number of bytes of data to be written.
This function must not be used with 0CXcip_WriteConnected. It's recommended that this function is only used to update the entire
output image (that is, no partial updates).
The 0CXcip_WriteConnected function is the preferred method of updating output data. However, for applications that need a
potentially faster method and do not need image integrity, this function can be a viable option.
0CX_SUCCESS Data was updated successfully
Return Value OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_BADPARAM connHandle or offset/dataSize is invalid
OCXHANDLE api Handl e;
OCXHANDL E connHandl e;
Example BYTE buffer [128]:

/Il Wite 128 bytes to the connected data buffer

OCXci p_W i t eConnect edl medi at e(api Handl e, connHandl e, buffer, O,
128);

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 55

Chapter 5

Backplane API Library Functions

For more information, see 0CXcip_Write Connected on page 53.

Tag Access Functions The API functions in this section can be used to access tag data within ControlLogix controllers.

The prototypes for most of these functions and their associated data structure definitions can
be found in the header file 0CXTagDh.h.

The tag access functions that include ‘Db’ in the name are for use with a valid tag database. For
more information, see 0CXcip_BuildTagDb on page 61.

0CXcip-AccessTagData

0CXcip_AccessTagData(
OCXHANDLE handle,
. char * pPathStr,
Syntax int WORD rspTimeout,
OCXCIPTAGACCESS * pTagAccArr,
WORD numTagAcc)
handle Handle returned by previous call to 0CXcip_Open.
pPathStr Pointer to NULL terminated device path string (see Appendix A).
Parameters rspTimeout CIP response timeout in milliseconds.
pTagAccArr Pointer to array of pointers to tag access definitions.
numTagAcc Number of tag access definitions to process.
This function efficiently reads and/or writes a number of tags. As many operations as fit are combined in one CIP packet. Multiple
packets can be required to process all access requests.
pTagAccArr is a pointer to an array of pointers to 0CXCIPTAGACCESS structures. numTagAcc is the number of pointers in the array.
The OCXCIPTAGACCESS structure is described in the rest of this section.
Eypedef struct tagOCXCIPTAGACCESS
char * tagName; /1 tag name (symName[x,y,z].mbr.mbr[x].etc)
WORD daType; /1 Data type code
WORD eleSize; /1 Size of one data element
WORD opType; /1 Read/Write operation type
WORD numEle; /1 Number of elements to read or write
void * data ; /1 Read/Write data pointer
void * wrMask; /1 Pointer to write bit mask data, NULL if none
int result; /1 Read/Write operation result
} OCXCIPTAGACCESS;
Description tagName Pointer to tag name string (symName[xy,z].mbr{x].etc). All array indices must be specified
g except the last set of brackets - if the last set is omitted, the indices are assumed to be zero.
daType Data type code (OCX_CIP_DINT, etc).
eleSize Size of one data element (DINT = 4, BOOL =1, etc).
opType OCX_CIP_TAG_READ_QOP or OCX_CIP_TAG_WRITE_OP.
numeEle Number of elements to read or write - must be 1if not array.
data Pointer to read/write data buffer. Strings are expected to be in 0CX_CIP_STRING82_TYPE
format. The size of the data is assumed to be numEle * eleSize.
Write data mask. Set to NULL to execute a non-masked write. If a masked write is specified,
numEle must be 1and the total amount of write data must be 8 bytes or less. Only signed and
wrMask unsigned integer types can be written with a masked write. Only data bits with corresponding
set wrMask bits are written. If a wrMask is supplied, it's assumed to be the same size as the
write data (eleSize * numEle).
Read/write operation result (output). Set to 0CX_SUCCES if operation successful, else if failure.
result This value isn't set if the function return value is other than 0CX_SUCCESS or opType is
0CX_CIP_TAG_NO_OP.
Full structure reads and writes aren't permitted (except for 0CX_CIP_STRING82).
0CX_SUCCESS All access requests were processed (except those whose opTypes were set to
Return Value - OCX_CIP_TAG_NO_OP). Check the individual access result parameters for success/fail.
Else An access error occurred. Individual access result parameters not set.
56 Rockwell Automation Publication 1756-UMO03G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

Example

OCXHANDLE api Handl e;
OCXCl PTAGACCESS tal;

OCXCl PTAGACCESS ta2;

OCXCl PTAGACCESS * pTal 2] ;

| NT32 wr Val ;
| NT16 rdval ;
int rc;

tal.tagNane = “dintArr[2]";

tal. daType = OCX_Cl P_DI NT;

tal. el eSi ze = 4;

tal. opType = OCX_ClI P_TAG WRI TE_OP;

tal. nuntl e 1;

tal.data = (void *) &wVal;

tal. w Mask = NULL;

tal.result = OCX_SUCCESS;

wrVal = 123456;

ta2.tagName = “intVal”

ta2. daType = OCX_Cl P_I NT;

ta2. el eSize = 2;

ta2. opType = OCX_Cl P_TAG READ OCF;

ta2. nuntl e 1;

ta2.data = (void *) &rdVval;

ta2. w Mask = NULL;

ta2.result = OCX_SUCCESS;

pTa[0] = &tal;

pTa[1l] = &t az;

rc = OCXci p_AccessTagDat a(Handl e, “p:1,s:0”, 2500, pTa, 2);
if (OCX_SUCCESS != rc)

{
printf(“OCXci p_AccessTagData() error = %\n", rc);

}

el se
{
if (tal.result != OCX_SUCCESS)

printf(“% wite error = %d\n”, tal.tagNanme, ta.result);
el se

printf(“% wite successful\n”, tal.tagNane);

if (ta2.result != OCX_SUCCESS)

printf(“% read error = %\n”, ta2. tagNane, ta.result);
el se

printf(“% = %l\n”, ta2.tagNanme, rdVal);

}

For more information, see 0CXcip_Open on page 49.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

57

Chapter 5

Backplane API Library Functions

0CXcip_AccessTagDataAbortable

0CXcip_AccessTagDataAbortable(

OCXHANDLE handle,
char * pPathStr,
Syntax int WORD rspTimeout,
OCXCIPTAGACCESS * pTagAccArr,
WORD numTagAcc,
WORD * pAbortCode)
Pointer to abort code. This lets the application pass many tags and gracefully abort between
Parameters pAbortCode accesses. Can be NULL. *pAbort can be OCX_ABORT_TAG_ACCESS_MINOR to abort between tag
accesses or 0CX_ABORT_TAG_ACCESS_MAJOR to abort between CIP packets.
Description This function is similar to 0CXcip_AccessTagData(), but provides an abort flag.
For more information, see 0CXcip_AccessTagData on page 56.
0CXcip_CreateTagDbHandle
0CXcip_CreateTagDbHandle(
OCXHANDLE apiHandle,
Syntax int BYTE *pPathStr,
WORD devRspTimeout,
OCXTAGDBHANDLE * pTagDbHandle);
apiHandle Handle returned by previous call to 0CXcip_Open.
PathStr Pointer to device path string.
Parameters p For more information, see Appendix B, Specify the Communication Path on page 109.
devRspTimeout Device unconnected message response timeout in milliseconds.
pTagDbHandle Pointer to OCXTAGDBHANDLE instance.
0CXcip_CreateTagDbHandle creates a tag database and returns a handle to the new database if successful.
Description IMPORTANT: Once the handle has been created, 0CXcip_DeleteTagDbHandle must be called when the tag database is no longer
necessary. 0CXcip_Close() deletes any tag database resources that the application left open.
0CX_SUCCESS Tag database handle successfully created
OCX_ERR_NOACCESS Invalid apiHandle
Return Value
OCX_ERR_MEMALLOC Out of memory
OCX_ERR_* code Other failure
OCXHANDLE api Handl e;
OCXTAGDBHANDLE hTagDb;
BYTE * devPathStr = (BYTE *) “p:1,s:0";
i nt rc;
Example rc = OCXci p_Creat eTagDbHandl e(hApi, devPathStr, 1000, &hTagDb);
if (rc !'= OCX_SUCCESS)
printf(“Tag database handl e creation failed!\n");
el se
printf(“Tag database handl e successfully created.\n");
For more information, see the following:
« 0CXcip_Open on page 49
» 0CXcip_DeleteTagDbHandle on page 59
58 Rockwell Automation Publication 1756-UMO03G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip_DeleteTagDbHandle

0CXcip_DeleteTagDbHandle(

Syntax int OCXHANDLE apiHandle,
OCXTAGDBHANDLE tdbHandle);
apiHandle Handle returned by previous call to 0CXcip_Open.
Parameters - -
tdbHandle Handle created by previous call to 0CXcip_CreateTagDbHandle.
This function is used by an application to delete a tag database handle. tdbHandle must be a valid handle that is previously created
Description with 0CXcip_CreateTagDbHandle.
IMPORTANT: Once the tag database handle has been created, this function must be called when the database is no longer needed.
0CX_SUCCESS Tag database handle successfully created
Return Value OCX_ERR_NOACCESS apiHandle or tdbHandle invalid
OCX_ERR_* code Other failure
OCXHANDLE hApi ;
Example OCXTAGDBHANDLE hTagDb;

OCXci p_Del et eTagDbHandl e(hApi , hTagDb) ;

For more information, see O0CXcip_CreateTagDbHandle on page 58.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 59

Chapter 5

Backplane API Library Functions

0CXcip_SetTagDhOptions

0CXcip_SetTagDbOptions(

OCXHANDLE apiHandle,
Syntax int OCXTAGDBHANDLE tdbHandle,
DWORD optFlags,
WORD structAlign)
apiHandle Handle returned by previous call to 0CXcip_Open.
tdbHandle Handle created by previous call to 0CXcip_CreateTagDbHandle.
Bit masked option flags field. Multiple options can be combined (with |).
OCX_CIP_TAGDBOPT_NORM_STRINGS:
Normalized strings are stored as <DATA><NULL> (instead of <LEN><DATA). 0CXcip_GetSymbolinfo() and
0CXcip_GetStructMbrinfo() report strings as having a datype of 0CX_CIP_TAGDB_DATYPE_NORM_STRING. The
reported eleSize is the size of the string data buffer including space for the NULL term (OCX_CIP_STRING82s
have an eleSize of 83). The reported hStruct is zero (not a struct). When accessing normalized strings (with
0CXcip_AccessTagDataDb()). pass a daType of 0CX_CIP_TAGDB_DATYPE_NORM_STRING.
OCX_CIP_TAGDBOPT_NORM_BOOLS:
With this option, 0CX_CIP_BOOL variables are treated as bytes. 0CX_CIP_BYTE, OCX_CIP_WORD,
0CX_CIP_DWORD, and OCX_CIP_LWORD types are converted to arrays of 0CX_CIP_BOOLs. A normalized
optFlags 0CX_CIP_DWORD are normalized to an array of 32 0CX_CIP_BOOL (that occupies 32 bytes) for example.
When accessing arrays of BOOLs (with 0CXcip_AccessTagDataDb()), any number of array elements can be
specified - masked and unmasked controller reads/writes are executed as required to complete the tag
Parameters access. Some 0CX_CIP_BOOLs can't be normalized. The FUNCTION_GENERATOR structure has
0CX_CIP_BOOLSs that are aliased into an OCX_CIP_DINT. Because the DINT base member isn't expanded into
a BOOL array, the BOOL alias structure members can't be normalized. A special (and rarely used) data type
has been created to identify alias structure member 0CX_CIP_BOOLs that can't be normalized:
OCX_CIP_TAGDB_DATYPE_NORM_BITMASK.
0CX_CIP_TAGDBOPT_STRUCT_MBR_ORDER_NATIVE:
This option causes 0CXcip_GetStructMbrinfo() to retrieve structure members in native order (lowest offset
to highest) instead of alphabetical order. This isn't a normalization option.
Ignored if no normalization options are used. If normalization is enabled, this can be 1,2, 4, or 8 (4 =
structAlian recommended). Structure members are aligned according to the minimum alignment requirement. That is, if
9 structAlign is 4, 0CX_CIP_DINTs are aligned on 4 byte boundaries, but 0CX_CIP_INTs are aligned on 2 byte
boundaries.
0CX_SUCCESS Options set successfully
OCX_ERR_NOACCESS |apiHandle or tdbHandle invalid
OCX_ERR_* code Other failure
Description This function can be used to change options on the fly, but is intended to be called once immediately after OCXcip_CreateTagDbHandle().
P All options are off by default.
OCXHANDLE hApi ;
(LIEIXTAGDBHAND hTagDb:
DWORD opts = OCX_ClI P_TAGDBOPT_NORM STRI NGS |
OCX_Cl P_TAGDBOPT_NORM BOOLS;
int rc;
rc = OCXci p_Set TagDbOpti ons(hApi, hTagDb, opts, 4);
Example if (rc !'= OCX SUCCESS)

{
}

el se

{

}

printf(“QOCXci p_Set TaghbOpts() error %@\n”, rc);

printf("OCXci p_Set TagDbOpt s() success\n”);

60

For more information, see the following:

0CXcip_GetSymbolinfo on page 63.
0CXcip_GetStructinfo on page 64.

0CXcip_GetStructMbrinfo on page 65.
0CXcip_AccessTagDataDb on page 67.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip_BuildTagDb

0CXcip_BuildTagDb(
Syntax i OCXTACDEHANLE tdfende,
WORD * numSymbols);
apiHandle Handle returned by previous call to 0CXcip_Open.
Parameters tdbHandle Handle created by previous call to 0CXcip_CreateTagDbHandle.
numSymbols Pointer to WORD value - set to the number of discovered symbols if success.
This function is used to retrieve a tag database from the target device. If the database associated with tdbHandle was previously built, the
Description ?xisting database is deleted before the new one is built. This function communicates with the target device and my take a few milliseconds to a
ew tens of seconds to complete. tdbHandle must be a valid handle that is previously created with 0CXcip_CreateTagDbHandle. If successful,
*numSymbols is set to the number of symbols in the tag database.
0CX_SUCCESS Tag database build successful
OCX_ERR_NOACCESS apiHandle or tdbHandle invalid
Return Value OCX_ERR_VERMISMATCH The device program version changed during the build
OCX_CIP_INVALID_REQUEST Target device response not valid or remote device not accessible
OCX_ERR_* code Other failure
OCXHANDLE hApi ;
OCXTAGDBHANDLE hTagDb;
WORD nunSyns
Example if (OCXcip_Buil dTagDb(hApi, hTagDb, &nunSyns) != OCX SUCCESS)

printf(“Error building tag database\n”);
el se
printf(“Tag database build success, nunByns=%\n", nunSyns);

For more information, see the following:
» (0CXcip_CreateTagDbHandle on page 58.
« 0CXcip_DeleteTagDbHandle on page 59.
» 0CXcip_TestTagDbVer on page 62.

+ 0CXcip_GetSymbollnfo on page 63.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 61

Chapter 5

Backplane API Library Functions

oc

Xcip_TestTagDbVer

0CXcip_TestTagDbVer(

Syntax int OCXHANDLE apiHandle,
OCXTAGDBHANDLE tdbHandle);
apiHandle Handle returned by previous call to 0CXcip_Open.
Parameters - -
tdbHandle Handle created by previous call to 0CXcip_CreateTagDbHandle.
Description This function reads the program version from the target device and compares it to the device program version read when the tag database was built.
0CX_SUCCESS Tag database exists and program versions match
OCX_ERR_NOACCESS apiHandle or tdbHandle invalid
Return Value |OCX_ERR_OBJEMPTY Tag database empty, call 0CXcip_BuildTagDb to build
OCX_ERR_VERMISMATCH Database version mismatch, call 0CXcip_BuildTagDb to refresh
OCX_ERR_* code Other failure
OCXHANDLE hApi ;
OCXTAGDBHANDLE hTagDb;
int rc;
rc = OCXci p_Test TagDbVer (hApi, hTagDb);
if (rc !'= OCX_SUCCESS)
Example {
if (rc == OCX_ERR OBJEMPTY || rc == OCX_ERR VERM SMATCH)
rc = OCXci p_Bui | dTagDb(hApi, hTagDb);
}
if (rc !'= OCX_SUCCESS)
printf(“Tag database not valid\n”);
For more information, see O0CXcip_BuildTagDb on page 61.
62 Rockwell Automation Publication 1756-UMO03G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip_GetSymbolinfo

0CXcip_GetSymbolinfo(

OCXHANDLE apiHandle,
Syntax int OCXTAGDBHANDLE tdbHandle,
WORD symld,
OCXCIPTAGDBSYM * pSyminfo);
apiHandle Handle returned by previous call to 0CXcip_Open.
tdbHandle Handle created by previous call to 0CXcip_CreateTagDbHandle.
symld 0 through numSymbols-1.
Pointer to symbol info variable - all members set if success:
- name = NULL terminated symbol name
- daType = 0CX_CIP_BOOL, OCX_CIP_INT, 0CX_CIP_STRING82, and so on.
Parameters - hStruct = 0 if symbol is a base type, else if symbol is a structure
- eleSize = size of single data element, is zero if the symbol is a structure and the structure
pSyminfo isn't accessible as a whole
- xBim = 0 if no array dimension, else if symbol is array
- yDim = 0 if no array dimension, else for Y dimension
- zDim =0 if no array dimension, else for Z dimension
- fAttr = Bit masked attributes, where:
OCXCIPTAGDBSYM_ATTR_ALIAS - Symbol is an alias for another tag.
Description This function gets symbol information from the tag database. A tag database must have been previously built with
P 0CXcip_BuildTagDb. This function does not access the device or verify the device program version.
0CX_SUCCESS Symbol information successfully retrieved
OCX_ERR_NOACCESS apiHandle or tdbHandle invalid
Return Value —
OCX_ERR_BADPARAM symld invalid
OCX_ERR_* code Other failure
OCXHANDLE hApi ;
OCXTAGDBHANDLE hTagDb;
OCXCl PTAGDBSYM sym nf o;
WORD nunSyns;
WORD sym d;
int rc;
if (OCXcip_BuildTagDb(hApi, hTagDb, &nunByns) == OCX_ SUCCESS)
{
for (symd = 0; symd < nunByns; sym d++)
{
Example rc = OCXci p_Cet Synbol | nfo(hApi, hTagbb, symd, &sym nfo);

if (rc == OCX_SUCCESS)

{

printf(“Synmbol nanme = [%]\n”, sym nfo.nane);
printf(“ type = %®4X\n”, sym nfo.daType);
printf(“ hStruct = %\ n”, sym nfo.hStruct);
printf(“ eleSize = %\ n”, synlnfo.eleSize);
printf(*“ xDim= %\ n", sym nfo.xD nj;
printf(“ yDim= %\ n", sym nfo.yD n);
printf(“ zDim= %\n", sym nfo.zD n);

}

}

}

For more information, see the following:
+ 0CXcip_BuildTagDb on page 61.

+ 0CXcip_TestTagDbVer on page 62.
o 0CXcip_GetStructinfo on page 64.

+ 0CXcip_GetStructMbrinfo on page 65.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 63

Chapter 5 Backplane API Library Functions

0CXcip_GetStructinfo

0CXcip_GetStructlnfo(

OCXHANDLE apiHandle,
Syntax int OCXTAGDBHANDLE tdbHandle,
WORD hStruct,
OCXCIPTAGDBSTRUCT * pStructinfo);
apiHandle Handle returned by previous call to 0CXcip_Open.
tdbHandle Handle created by previous call to 0CXcip_CreateTagDbHandle.
hStruct Nol?zero structure handle from previous 0CXcip_GetSymbolinfo or OcxCip_GetStructMbrinfo
call.
Painter to structure info variable - all members set if success:
- name = NULL terminated name string
- daType = Structure data type
- daSize = Size of structure data in bytes, zero indicates the structure isn't accessible as a
whole
Parameters - ioType = OCX_CIP_STRUCT_IOTYPE_NA: Structure isn't accessible as a whole.
OCX_CIP_STRUCT_IOTYPE_INP: Structure is an input type and is read-only when accessed
pStructinfo as awhole. . .
- OCX_CIP_STRUCT_IOTYPE_OUT: Structure is an output type and is read-only when accessed
as a whole.

- OCX_CIP_STRUCT_IOTYPE_RMEM: Structure is a memory type and is read-only when
accessed as a whole.

- OCX_CIP_STRUCT_IOTYPE_MEM: Structure is memory and is read/write compatible.
OCX_CIP_STRUCT_IOTYPE_STRING: Structure is a memory string and is read/write
compatible.

- numMbr = number of structure members

This function gets structure information from the tag database. A tag database must have been previously built with

Description 0CXcip-BuildTagDb. This function does not access the device or verify the device program version.
0CX_SUCCESS Structure info successfully retrieved
OCX_ERR_NOACCESS apiHandle or tdbHandle invalid
Return Value —
OCX_ERR_BADPARAM hStruct invalid
OCX_ERR_* code Other failure
OCXHANDLE hApi ;
OCXTAGDBHANDL E hTagDb;
OCXCl PTAGDBSYM sym nf o;
OCXCl PTAGDBSTRUCT struct | nfo;
WORD syml d;
int rc;
rc = OCXci p_GCet Synmbol I nfo(hApi, hTagDb, sym d, &sym nfo);
if (rc == OCX _SUCCESS && sym nfo.hStruct !'=0)
Example {

rc = OCXci p_GetStructlnfo(hApi, hTagDb, sym nfo.hStruct,
&struct | nfo);

if (rc == OCX_SUCCESS)

{

printf(“Structure nane = [%]\n”, structlnfo.nane);
printf(* type = %94X\n”, structlnfo.daType);
printf(“ size = %\ n”, structlnfo.daSize);

printf(“ numvbr = %\ n”, structlnfo.numvbr);

}

}

For more information, see the following:
+ 0CXcip_BuildTagDb on page 61.

« 0CXcip_TestTagDbVer on page 62.
o 0CXcip_GetSymbolinfo on page 63.

+ 0CXcip_GetStructMbrinfo on page 65.

64 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip-GetStructMbrinfo

0CXcip_GetStructMbrinfol

OCXHANDLE apiHandle,
: OCXTAGDBHANDLE tdbHandle,
Syntax int WORD hStruct
WORD mbrld
OCXCIPTAGDBSTRUCTMBR * pStructMbrinfo);
api Handle Handle returned by previous call to 0CXcip_Open.
tdb Handle Handle created by previous call to 0CXcip_CreateTagDbHandle.
hSt Nonzero structure handle from previous 0CXcip_GetSymbollnfo or 0CXcip_GetStructMbrinfo
ruct call.
mbrld Member identifier (0 thru numMbr-1).

Pointer to structure member info variable - all members set if success:
- name = NULL terminated name string daType = Structure member data type

Parameters - hStruct = Zero if member is a base type, nonzero for structure

- da0fs = Byte offset of member data in structure data block

- bitID = Bit 1D (0-7) if daType is 0CX_CIP_BOOL and BOOL normalization is off, or daType is
0CX_CIP_TAGDB_DATYPE_NORM_BITMASK

- arrDim = Member array dimensions if array, 0 = not array

- dispFmt = Recommended display format

- fAttr = Bit masked attribute flags

- where: OCXCIPTAGDBSTRUCTMBR_ATTR_ALIAS - Indicates that member is an alias for (or
within) another member.

- baseMbrld = Alias base member 1D (0-numMbr, if alias flag is set).

pStructMbrinfo

This function gets structure member information from the tag database. A tag database must have been previously built with

Description 0CXcip-BuildTagDb. This function does not access the device or verify the device program version.
0CX_SUCCESS Structure member info successfully retrieved
OCX_ERR_NOACCESS apiHandle or tdbHandle invalid
Return Value ——
OCX_ERR_BADPARAM hStruct or mbrld invalid
OCX_ERR_* code Other failure
OCXHANDL E hApi ;
OCXTAGDBHANDLE hTagDb;
OCXCl PTAGDBSTRUCT st ruct | nf o;
SCR:XO FTAGDBSTRUCTM struct Mor | nf o;
WORD hStruct;
WORD nbr 1 d;
int rc;
rc = OCXci p_Get Structlnfo(hApi, hTagDb, hStruct, &structlnfo);
if (rc == OCX_SUCCESS)
Example {
for (mbrid = 0; nmbrid < structlnfo.nunVbr; nbrid++)
{

rc = OCXci p_Cet Struct Morlnfo(hApi, hTagDb, hStruct, nbrid,
&struct Mor | nfo);

if (rc == OCX_SUCCESS)
printf(“Successfully retrieved nenber info\n”);

el se

printf(“Error % getting nmenber info\n”, rc);
}

}

For more information, see the following:
+ 0CXcip_BuildTagDb on page 61.
0CXcip_TestTagDbVer on page 62.

+ 0CXcip_GetSymbollnfo on page 63.
o 0CXcip_GetStructinfo on page 64.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 65

Chapter 5

Backplane API Library Functions

0CXcip_GetTagDbTaginfo

0CXcip_GetTagDbTaglnfo(

OCXHANDLE apiHandle,
. OCXTAGDBHANDLE tdbHandle,
Syntax int char * tagName,
OCXCIPTAGINFO * tagInfo
3
apiHandle Handle returned by previous call to 0CXcip_Open.
tdbHandle Handle created by previous call to 0CXcip_CreateTagDbHandle.
tagName Pointer NULL terminated tag name string.
Pointer to OCXCIPTAGINFO structure. All members set if success.
- daType = Data type code.
- hStruct = Zero if the member is a base type, nonzero for structure.
Parameters - eleSize = Data element size in bytes.
- xBim = X dimension - zero if not an array.
taginfo - yDim =Y dimension - zero if no Y dimension.
- zDim =Z dimension - zero if no Z dimension.
- xldx = X index - zero if not array.
- yldx =Y index - zero if not array.
- zldx =Z index - zero if not array.
- dispFmt = Recommended display format.
This function gets information regarding a fully qualified tag name (that is symName[x.y.z].mbr x].etc). If symName or mbr specifies
Description an array, unspecified indices are assumed to be zero. A tag database must have been previously built with 0CXcip_BuildTagDb(). This
function does not communicate with the target device or verify the device program version.
Return Value 0CX_SUCCESS Success
OCX_ERR_* code Failure
OCXHANDLE hApi ;
OCXTAGDBHANDLE hTagDb;
OCXCl PTAG NFO t agl nf o;
int rc;
rc = OCXci p_GCet TagDbTagl nf o(hApi, hTagDb, “synil,2,3].nbr[0]",
&t agl nf o) ;
if (rc !'= OCX_SUCCESS)
Example {
printf(“OCXci p_CGet TagDbTagl nfo() error %d\n”, rc);
}
el se
{
printf("OCXci p_Get TagDbTagl nfo() success\n”);
}
For more information, see 0CXcip_BuildTagDb on page 61.
66 Rockwell Automation Publication 1756-UMO03G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip_AccessTagDataDh

0CXcip_AccessTagDataDh(
OCXHANDLE apiHandle,
. OCXTAGDBHANDLE tdbHandle,
Syntax int OCXCIPTAGDBACCESS ** pTaghccAr,
WORD numTagAcc,
WORD * pAbortCode)
apiHandle Handle returned by previous call to 0CXcip_Open.
tdbHandle Handle created by previous call to 0CXcip_CreateTagDbHandle.
Pointer to array of pointers to tag access definitions.
tagName = Pointer to tag name string (symName[x,y,z].mbr{x], and so on). All array indices
must be specified except the last set of brackets - if the last set is omitted, the indices are
assumed to be zero.

- daType = Data type code (OCX_CIP_DINT, and so on).

- eleSize = Size of one data element (DINT = 4, BOOL =1, and so on).

- opType = OCX_CIP_TAG_READ_OP or OCX_CIP_TAG_WRITE_OP.

- numkle = Number of elements to read or write - must be 1if not an array.

- data = Pointer to read/write data buffer. The size of the data is assumed to be numEle *

pTagAccArr eleSize.
Parameters - wrMask = Write data mask. Set to NULL to execute a non-masked write. If a masked write
is specified, numEle must be 1and the total amount of write data must be 8 bytes or less.
Only signed and unsigned integer types can be written with a masked write. Only data bits
with corresponding set wrMask bits are written. If a wrMask is supplied, it's assumed to be
the same size as the write data (eleSize * numEle).

- result = Read/write operation result (output). Set to 0CX_SUCCES if operation successful,
else if failure. This value isn't set if the function return value is other than OCX_SUCCESS or
opType is 0CX_CIP_TAG_NO_OP.

numTagAcc Number of tag access definitions to process.
Pointer to abort code. This lets the application pass many tags and gracefully abort between
pAbortCode accesses. Can be NULL. *pAbort can be OCX_ABORT_TAG_ACCESS_MINOR to abort between tag
accesses or 0CX_ABORT_TAG_ACCESS_MAJOR to abort between CIP packets.
Description This function is similar to 0CXcip_AccessTagData() but lets the full structure reads and writes.

For more information, see the following:

» 0CXcip_AccessTagData on page 56.
» 0CXcip_GetSymbolinfo on page 63.

» (0CXcip_GetStructinfo on page 64.
o 0CXcip_GetStructMbrinfo on page 65.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 67

Chapter 5

Backplane API Library Functions

0CXcip_SetTagAccessConnSize

Syntax

0CXcip_SetTagAccessConnSize (
int OCXHANDLE apiHandle,
int connSize)

Parameters

handle Handle returned by previous call to 0CXcip_Open.

connSize Must be one of 0CX_TAGACC_CONNSIZE_SM, OCX_TAGACC_CONNSIZE_MED, or
OCX_TAGACC_CONNSIZE_LG

Description

This function allows the connection size that is used for tag access to be configured. A smaller connection size results in less loading
on the controller and can reduce the number of redundant chassis synchronization errors. By default, the APl uses the largest
connection size for the highest performance. To select a smaller connection size, the application must call the
0CXcip_SetTagAccessConnSize function once before accessing any controller tags.

There are three connection size options are available:

« Small (OCX_TAGACC_CONNSIZE_SM)

« Medium (OCX_TAGACC_CONNSIZE_MED)

« Large (OCX_TAGACC_CONNSIZE_LG).

Alarger connection size usually results in faster tag transfers, but can increase controller loading. Trial and error can be required to
determine the optimal size for a given application and system configuration.

When writing tags to a controller in a redundant system, we recommended that the small connection size is used.

Example

rc = 0CXcip_Open(&apiHandle);
if (rc = 0CX_SUCCESS)

{
fprintf(stderr, "ERROR: OCXcip_Open failed: %d\n", rc);
return(rc);

}
rc = 0CXcip_SetTagAccessConnSize(apiHandle, 0CX_TAGACC_CONNSIZE_SM);
if (rc = 0CX_SUCCESS)

{
fprintf(stderr, "ERROR: OCXcip_SetTagAccessConnSize failed: %d\n", rc);
return(rc);

}

For more information, see the following:
» 0CXcip_AccessTagData on page 56

» 0CXcip_AccessTagDataDb on page 67

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5

Backplane API Library Functions

Messaging Functions This section describes the Messaging functions.

0CXcip-GetDeviceldObject

0CXcip_GetDeviceldObject(
OCXHANDLE apiHandle,
Syntax int BYTE *pPathStr,
OCXCIPIDOBJ *idobject
WORD timeout);
api Handle Handle returned from OCXcip_Open call
pPathStr Path to device being read
Parameters — - — P——
idobject Painter to structure receiving the Identity Object data
timeout Number of milliseconds to wait for the read to complete
0CXcip_GetDeviceldObject retrieves the identity object from the device at the address that is specified in pPathStr. apiHandle must
be a valid handle that is returned from OCXcip_Open.
idobject is a pointer to a structure of type OCXCIPIDOBJ. The members of this structure are updated with the module identity data.
timeout is used to specify the amount of time in milliseconds the application must wait for a response from the device.
The OCXCIPIDOBJ structure is defined as follows:
typedef struct tagOCXCIPIDOBJ
{
WORD VendorlD; // Vendor ID number
Description WORD DeviceType; // General product type
WORD ProductCode; // Vendor-specific product identifier
BYTE MajorRevision; // Major revision level
BYTE MinorRevision; // Minor revision level
DWORD SerialNo; // Module serial number
BYTE Name[32]; // Text module name (null-terminated)
BYTE Slot; // Not used
}0CXCIPIDOBJ;
0CX_SUCCESS ID abject was retrieved successfully
OCX_ERR_NOACCESS apiHandle does not have access
Return Value - -
OCX_ERR_MEMALLOC If not enough memory is available
OCX_ERR_BADPARAM If the path was bad
OCXHANDLE api Handl e;
QOCXCl PI DOBJ i dobj ect ;
BYTE Path[]="p: 1,s:0";
/! Read Id Data fromcontroller in slot O
OCXci p_Get Devi cel dnj ect (api Handl e, &Path, & dobject, 5000);
Example printf("\r\n\rDevice Nane: ");
printf((char *)idobject. Nane);
printf("\n\rVendorlD. %X DeviceType: %", idobject.VendorlD,
i dobj ect . Devi ceType);
printf("\n\rProdCode: % Serial Num % d", idobject.ProductCode,
i dobj ect. Seri al No) ;

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip_GetDevicelCPObject

0CXcip_GetDevicelCPObject(
OCXHANDLE apiHandle,
Syntax int BYTE *pPathStr,
OCXCIPICPOBJ *icpobject
WORD timeout);
api Handle Handle returned from 0CXcip_Open call
pPathStr Path to device being read
Parameters — - —
icpobject Pointer to structure receiving the ICP data
timeout Number of milliseconds to wait for the read to complete
0CXcip_GetDevicelCPObject retrieves the ICP object from the module at the address that is specified in pPathStr. apiHandle must be
a valid handle that is returned from OCXcip_Open.
icpobject is a pointer to a structure of type 0CXCIPICPOBJ. The members of this structure are updated with the ICP object data from
the addressed module. The ICP object contains various status and diagnostic information about the module’s communications over
the backplane and the chassis in which it resides.
timeout is used to specify the amount of time in milliseconds the application must wait for a response from the device.
The OCXCIPICPOBJ structure is defined as follows:
typedef struct tagOCXCIPICPOBJ
{
BYTE RxBadMulticastCrcCounter; // Number of multicast Rx CRC errors
BYTE MulticastCrcErrorThreshold; // Threshold for entering fault state due to multicast CRC errors
BYTE RxBadCrcCounter; // Number of CRC errars that occurred on Rx
Description BYTE RxBusTimeoutCounter; // Number of Rx bus timeouts
BYTE TxBadCrcCounter; // Number of CRC errors that occurred on Tx
BYTE TxBusTimeoutCounter; // Number of Tx bus timeouts
BYTE TxRetryLimit; // Number of times a Tx is retried if an error occurs
BYTE Status; // ControlBus status
WORD ModuleAddress; // Module's slot number
BYTE RackMajorRev; // Chassis major revision
BYTE RackMinorRev; // Chassis minor revision
DWORD RackSerialNumber; // Chassis serial number
WORD RackSize; // Chassis size (number of slots)
}0CXCIPICPOBJ;
0CX_SUCCESS ICP object was retrieved successfully
OCX_ERR_NOACCESS apiHandle does not have access
Return Value - -
OCX_ERR_MEMALLOC If not enough memory is available
OCX_ERR_BADPARAM If the path was bad
OCXHANDLE api Handl e;
OCXCl PI DOBJ i cpobj ect;
BYTE Path[]="p:1,s:0";
/!l Read ICP Data fromcontroller in slot O
Example OCXci p_Get Devi cel CPObj ect (api Handl e, &Path, & cpobject, 5000);
printf("\n\rRack Size: % Serial Num 9% d", icpobject.RackSize,
i cpobj ect. RackSeri al Nunber) ;
printf("\n\rRack Revision: %. %", icpobject.RackMj orRev,
i cpobj ect. RackM nor Rev) ;

70

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip_GetDeviceldStatus

Syntax

0CXcip_GetDeviceldStatus(
OCXHANDLE apiHandle,

int BYTE *pPathStr,

WORD *status,

WORD timeout);

Parameters

api Handle Handle returned from OCXcip_Open call

pPathStr Path to device being read

status Pointer to location receiving the Identity Object status word

timeout Number of milliseconds to wait for the read to complete

Description

0CXcip_GetDeviceldStatus retrieves the identity object status word from the device at the address that is specified in pPathStr.

apiHandle must be a valid handle that is returned from OCXcip_Open.

status is a pointer to a WORD that receives the identity status word data. The following bit masks and bit definitions can be used to

decode the status word:

- OCX_ID_STATUS_DEVICE_STATUS_MASK

- OCX_ID_STATUS_FLASHUPDATE - Flash update in progress

- OCX_ID_STATUS_FLASHBAD - Flash is bad

- OCX_ID_STATUS_FAULTED - Faulted

- OCX_ID_STATUS_RUN - Run mode

- OCX_ID_STATUS_PROGRAM - Program mode

- OCX_ID_STATUS_FAULT_STATUS_MASK

- OCX_ID_STATUS_RCV_MINOR_FAULT - Recoverable minor fault

- OCX_ID_STATUS_URCV_MINOR_FAULT - Unrecoverable minor fault

- OCX_ID_STATUS_RCV_MAJOR_FAULT - Recaverable major fault

- OCX_ID_STATUS_URCV_MAJOR_FAULT - Unrecaverable major fault
The key and controller mode bits are 555x specific

- OCX_ID_STATUS_KEY_SWITCH_MASK - Key switch position mask

- OCX_ID_STATUS_KEY_RUN - Keyswitch in run

- OCX_ID_STATUS_KEY_PROGRAM - Keyswitch in program

- OCX_ID_STATUS_KEY_REMOTE - Keyswitch in remote

- OCX_ID_STATUS_CNTR_MODE_MASK - Controller made bit mask

- OCX_ID_STATUS_MODE_CHANGING - Controller is changing modes

- OCX_ID_STATUS_DEBUG_MODE - Debug mode if controller is in Run mode
timeout is used to specify the amount of time in milliseconds the application must wait for a response from the device.

Return Value

0CX_SUCCESS ID abject was retrieved successfully

OCX_ERR_NOACCESS apiHandle does not have access

OCX_ERR_MEMALLOC If not enough memary is available

OCX_ERR_BADPARAM If the path was bad

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

OCXHANDLE api Handl e;
WORD st at us;
BYTE Path[]="p:1,s:0";

/! Read Id Status fromcontroller in slot O

OCXci p_Get Devi cel dSt at us(api Handl e, &Pat h, &status, 5000);
printf("\n\r");

switch(Status & OCX_| D_STATUS DEVI CE_STATUS_MASK)

{
case OCX | D STATUS FLASHUPDATE: // Flash update in progress
printf("Status: Flash Update in Progress");

br eak;

case OCX_ | D _STATUS FLASHBAD: // Flash is bad
printf("Status: Flash is bad");

br eak;

case OCX_| D_STATUS FAULTED: // Faulted

printf("Status: Faulted");

br eak;

case OCX I D _STATUS RUN: // Run node

printf("Status: Run node");

br eak;

case OCX_ | D_STATUS PROGRAM // Program node

Example printf("Status: Program node");

br eak;

defaul t:

printf("ERROR Bad status node");

br eak;

}
printf("\n\r");

switch(Status & OCX_| D_STATUS KEY_SW TCH_MASK)
{
case OCX | D STATUS KEY RUN: // Key switch in run
printf("Key switch position: Run");

br eak;

case OCX | D STATUS KEY_ PROGRAM // Key switch in program

printf("Key switch position: programn);
br eak;

case OCX | D _STATUS KEY _REMOTE: // Key switch in renote
printf("Key switch position: renote");

br eak;

defaul t:

printf("ERROR Bad key position");

br eak;

}

72 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip_GetExDevObject

0CXcip_GetExDeviceObject(
OCXHANDLE apiHandle,
Syntax int BYTE *pPathStr,
OCXCIPEXDEVOBJ *exdevobject
WORD timeout);
api Handle Handle returned from OCXcip_Open call
pPathStr Path to device being read
Parameters - - — - -
exdevobject Pointer to structure receiving the extended device object data
timeout Number of milliseconds to wait for the read to complete
0CXcip_GetDeviceExDevObject retrieves the Extended Device object from the module at the address that is specified in pPathStr.
apiHandle must be a valid handle that is returned from 0CXcip_Open.
exdevaobject is a pointer to a structure of type OCXCIPEXDEVOBJ. The members of this structure are updated with the extended device
object data from the addressed module.
timeout is used to specify the amount of time in milliseconds the application must wait for a respanse from the device.
The OCXCIPEXDEVOBJ structure is defined as follows:
typedef struct tagOCXCIPEXDEVOBJ
{
BYTE Name[64];
BYTE Description[64];
Description BYTE GeoLocation[64];
WORD NumPorts;
OCXCIPEXDEVPORTATTR PortList[8];
} OCXCIPEXDEVOBJ;
The OCXCIPEXDEVPORTATTR structure is defined as follows:
typedef struct tagOCXCIPEXDEVPORTATTR
{
WORD PortNum;
WORD PortUse;
} OCXCIPEXDEVPORTATTR;
0CX_SUCCESS ICP object was retrieved successfully
OCX_ERR_NOACCESS apiHandle does not have access
Return Value OCX_ERR_MEMALLOC If not enough memory is available
OCX_ERR_BADPARAM If the path was bad
OCX_CIP_INVALID_REQUEST The device does not support the requested object
OCXHANDLE api Handl e;
OCXCl PEXDEVOBJ exdevobj ect;
BYTE Path[]="p:1,s:0";
Example /1 Read Extended Device object fromcontroller in slot O

OCXci p_Get ExDevbj ect (api Handl e, &Pat h, &exdevobject, 5000);
printf("\nDevice Nane: %", exdevobject.Nane);
printf("\nDescription: %", exdevobject.Description);

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 73

Chapter 5 Backplane API Library Functions

0CXcip-GetWCTime

0CXcip_GetWCTime(
OCXHANDLE apiHandle,
Syntax int BYTE *pPathStr,
OCXCIPWCT *pWCT,
WORD timeout)
api Handle Handle returned from 0CXcip_Open call
Parameters pPathStr Path to device being accessed
pWCT Pointer to OCXCIPWCT structure to be filled with WallClockTime data
timeout Number of milliseconds to wait for the device to respond
0CXcip_GetWCTime retrieves information from the WallClockTime object in the specified device. The information is returned both in
‘raw’ format, and conventional time/date format.
apiHandle must be a valid handle that is returned from 0CXcip_Open.
pPathStr must be a pointer to a string containing the path to a device that supports the WallClockTime object, such as a ControlLogix
controller. For information on specifying paths, see Appendix B, Specify the Communication Path on page 109.
timeout is used to specify the amount of time in milliseconds the application must wait for a response from the device.
pWCT can point to a structure of type 0CXCIPWCT that, upon success, is filled with the data read from the device. As a special case,
pWCT can also be NULL.
If pWCT is NULL, then the system time is set with the local time that is returned from the WCT object. This is a convenient way to
synci}ronize the system time with the controller time. (Note: The user account must have appropriate privileges to set the system
time.
The OCXCIPWCT structure is defined as follows:
typedef struct tagOCXCIPWCT
{
ULARGE_INTEGER CurrentValue;
WORD TimeZone;
ULARGE_INTEGER CSTOffset;
WORD LocalTimeAdj;
SYSTEMTIME SystemTime;
Description } OCXCIPWCT;
CurrentValue is the 64-bit WallClockTime counter value (adjusted for local time), which is the number of microseconds since 1/1/1972,
00:00 hours. This is the raw’ WallClockTime as presented by the device.
TimeZone is obsolete and is no longer used. It's retained in the structure only for backwards compatibility and isn't used.
CSTOffset is the positive offset in microseconds from the current system CST (Coordinated System Time). In a system that uses a CST
Time Master, this value lets the WallClockTime be precisely synchronized among multiple devices that support CST and WCT.
LocalTimeAdj is obsolete and is no longer used. It's retained in the structure only for backwards compatibility and isn't used.
SystemTime is a Win32 structure of type SYSTEMTIME. (Refer to the Microsoft® Platform SDK documentation for more information.)
The time and date that is returned in this structure is the local adjusted time on the device. The SYSTEMTIME structure follows:
typedef struct _SYSTEMTIME {
WORD wYear;
WORD wMonth;
WORD wDay0fWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;
} SYSTEMTIME, *PSYSTEMTIME;
0CX_SUCCESS WCT information has been read successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_MEMALLOC Not enough memory is available
Return Value —
OCX_ERR_BADPARAM An invalid parameter was passed
OCX_ERR_NODEVICE The device does not exist
OCX_CIP_INVALID_REQUEST The device does not support the WCT object

T4 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

Example

OCXHANDLE api Handl e;

OCXCl PWCT Wt ;

BYTE Path[]="p:1,s:0"; // controller in Slot O
i nt rc;

rc = OCXci p_Get WCTi ne(api Handl e, Path, &Wt, 3000);

if (rc !'= OCX_SUCCESS)

{

printf("\n\rOCXci p_GetWCTinme failed: %\n\r", rc);

}

el se

{

printf("\nWall dock Tine: %92d/992d/ % 99©2d: 992d: ¥92d. ¥%9©3d",
Wt . Syst endli me. wibnt h, Wt . Syst enli ne. wbay,

Wt . SystenTi me. wyear, Wt. Systenili ne. wHour ,

Wt . Systemli ne. wM nute, Wt. Systenili me. wSecond,

Wt . Systenilime. wM | | i seconds) ;

}

For more information, see the following:

» 0CXcip_SetWCTime on page 76.
o (0CXcip_GetWCTimeUTC on page 78.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

(4

Chapter 5

Backplane API Library Functions

0CXcip_SetWCTime

0CXcip_SetWCTime(
OCXHANDLE apiHandle,
Syntax int BYTE *pPathStr,
OCXCIPWCT *pWCT,
WORD timeout);
api Handle Handle returned from OCXcip_Open call
Parameters pPathStr Path to device being accessed
pWCT Pointer to OCXCIPWCT structure with WallClockTime data to set
timeout Number of milliseconds to wait for the device to respond
0CXcip_SetWCTime writes to the WallClockTime object in the specified device. This function lets the time be specified in two
different ways: a specified date/time (Win32 SYSTEMTIME structure), or automatically set to the local system time. See the
description of the pWCT parameter for more information.
apiHandle must be a valid handle that is returned from 0CXcip_Open.
pPathStr must be a pointer to a string containing the path to a device that supports the WallClockTime object, such as a ControlLogix
controller. For information on specifying paths, see Appendix B, Specify the Communication Path on page 109.
timeout is used to specify the amount of time in milliseconds the application must wait for a response from the device.
pWCT can point to a structure of type 0CXCIPWCT, or can be NULL. If pWCT is NULL, the local system time is used (as returned by the
Win32 function GetLocalTime()).
The OCXCIPWCT structure is defined as follows:
typedef struct tagOCXCIPWCT
{
ULARGE_INTEGER CurrentValue;
WORD TimeZone;
ULARGE_INTEGER CSTOffset;
WORD LocalTimeAdj;
SYSTEMTIME SystemTime;
}OCXCIPWCT;
Description CurrentValue is ignored by this function.
TimeZone is obsolete and is no longer used. It's retained in the structure only for backwards compatibility and is ignored by this
function.
CSTOffset is ignored by this function.
LacalTimeAdj is obsolete and is no longer used. It's retained in the structure only for backwards compatibility and is ignored by this
function.
SystemTime is a Win32 structure of type SYSTEMTIME. The SYSTEMTIME structure follows:
typedef struct _SYSTEMTIME {
WORD wYear;
WORD wMonth;
WORD wDayOfWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;
} SYSTEMTIME, *PSYSTEMTIME;
The wDay0fWeek member isn't used by the 0CXcip_SetWCTime function.
0CX_SUCCESS WCT information has been set successfully
OCX_ERR_NOACCESS apiHandle does not have access
Return Value OCX_ERR_MEMALLOC Not enough memory is available
OCX_ERR_BADPARAM An invalid parameter was passed
OCX_ERR_NODEVICE The device does not exist
OCX_CIP_INVALID_REQUEST The device does not support the WCT object
76 Rockwell Automation Publication 1756-UMO03G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

OCXHANDLE api Handl e;

BYTE Path[]="p:1,s:0"; // controller in Slot O

i nt rc;

/1l Set the controller time to the local systemtine
Example 1 rc = OCXci p_Set WCTi ne(api Handl e, Path, NULL, 3000);

if (rc !'= OCX_SUCCESS)

{

printf("\n\rOCXcip_SetWCTinme failed: %\n\r", rc);

}

OCXHANDLE api Handl e;

OCXCl PWCT Wt ;

BYTE Path[]="p:1,s:0"; // controller in Slot 0O

i nt rc;

/1 Set the controller tine to current GMI using Systenine
Example 2 Get Syst enili me(&AMt . Syst enli ne) ;

rc = OCXci p_Set WCTi me(api Handl e, Path, &Wt, 3000);
if (rc !'= OCX_SUCCESS)

{
printf("\n\rOCXcip_SetWCTine failed: %\n\r", rc);

}

For more information, see the following:

+ 0CXcip_GetWCTime on page 74.
o (0CXcip_SetWCTimeUTC on page 80.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

VY

Chapter 5

Backplane API Library Functions

0CXcip_GetWCTimeUTC

0CXcip_GetWCTime(
OCXHANDLE apiHandle,
Syntax int BYTE *pPathStr,
OCXCIPWCT *pWCT,
WORD timeout)
api Handle Handle returned from 0CXcip_Open call
pPathStr Path to device being accessed
Parameters - - - -
pWCT Pointer to OCXCIPWCTUTC structure to be filled with WallClockTime data
timeout Number of milliseconds to wait for the device to respond
Compatibilit This function is compatible only with Logix 5000 controllers with firmware revision 16 or later installed. Firmware revision 15 or
P y earlier result in error OCX_CIP_INVALID_REQUEST. For previous firmware revisions, see 0CXcip_SetWCTime.
0CXcip_GetWCTimeUTC retrieves information from the WallClockTime object in the specified device. The time that is returned is
expressed as UTC time.
apiHandle must be a valid handle that is returned from 0CXcip_Open.
pPathStr must be a pointer to a string that contains the path to a device that supports the WallClockTime abject, such as a
ControlLogix controller. For information on specifying paths, see Appendix A.
timeout is used to specify the amount of time in milliseconds the application must wait for a response from the device.
pWCT can point to a structure of type 0CXCIPWCTUTC that, upon success, is filled with the data read from the device. As a special
case, pWCT can also be NULL.
If pWCT is NULL, then the system time is set with the UTC time that is returned from the WCT object. This is a convenient way to
synchronize the system time with the controller time. (IMPORTANT: The user account must have appropriate privileges to set the
system time.)
The OCXCIPWCTUTC structure is defined as follows:
typedef struct tagOCXCIPWCTUTC
{
ULARGE_INTEGER CurrentUTCValue;
char TimeZone[84];
int DSTOffset;
int DSTEnable;
SYSTEMTIME SystemTime;
} OCXCIPWCT;
Description TimeZone is a null-terminated string that describes the time zone configured on the controller. It includes the adjustment in hours

and minutes that is used to derive the local time value from UTC time. The TimeZone string is expressed in one of the following
formats:

GMT+hh:mm <location>

Or

GMT-hh:mm <location>
DSTOffset is the number of minutes (positive or negative) to be adjusted for Daylight Savings Time.
DSTEnable indicates whether Daylight Savings Time is in effect (1if DST is in effect, O if not).
SystemTime is a Win32 structure of type SYSTEMTIME. (For more information, see the Microsoft Platform SDK documentation.) The
time and date that is returned in this structure is UTC time. The SYSTEMTIME structure is as follows:

typedef struct _SYSTEMTIME {

WORD wYear;

WORD wMonth;
WORD wDayOfWeek;
WORD wDay;

WORD wHour;

WORD wMinute;
WORD wSecond;
WORD whMilliseconds;

} SYSTEMTIME, *PSYSTEMTIME;

78

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CX_SUCCESS

WCT information has been read successfully

OCX_ERR_NOACCESS

apiHandle does not have access

OCX_ERR_MEMALLOC

Not enough memory is available

Return Value —
OCX_ERR_BADPARAM An invalid parameter was passed
OCX_ERR_NODEVICE The device does not exist
OCX_CIP_INVALID_REQUEST The device does not support the WCT abject
OCXHANDLE api Handl e;
OCXCl PWCTUTC Wt ;
BYTE Path[]="p:1,s:0"; // controller in Slot O
i nt rc;
rc = OCXci p_Get WCTi mneUTC(api Handl e, Path, &Wt, 3000);
if (rc !'= OCX_SUCCESS)
{
printf("\n\rOCXci p_Get WCTi meUTC failed: %\n\r", rc);
Example }
el se
{
printf("\nWall Cock Tinme: 9%2d/ %92d/ % %®©2d: %02d: %9©2d. ¥©3d",

Wt . Syst endli me. wibnt h, Wt . Syst enli ne. wbay,
Wt . SystenTi me. wyear, Wt. Systenili ne. wHour ,

Wt . Systemli ne. wM nute, Wt. Systenili me. wSecond,
Wt . Systenili me. wM | | i seconds) ;

}

For more information, see the following:

0CXcip_GetWCTime on page 74.
0CXcip_SetWCTimeUTC on page 80.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

19

Chapter 5

Backplane API Library Functions

0CXcip-SetWCTimeUTC

0CXcip_SetWCTimeUTC(
OCXHANDLE apiHandle,
Syntax int BYTE *pPathStr,
OCXCIPWCTUTC *pWCT,
WORD timeout)
api Handle Handle returned from 0CXcip_Open call
Parameters pPathStr Path to device being accessed
pWCT Pointer to OCXCIPWCTUTC structure with WallClockTime data to set
timeout Number of milliseconds to wait for the device to respond
Compatibilit This function is compatible only with Logix 5000 controllers with firmware revision 16 or greater installed. Firmware revision 15 or
P y earlier result in the error 0CX_CIP_INVALID_REQUEST. For previous firmware revisions, refer to 0CXcip_SetWCTime().
0CXcip_SetWCTimeUTC writes to the WallClockTime abject in the specified device. This function lets the time be specified in two
different ways: a specific date and time that is expressed in UTC time (Win32 SYSTEMTIME structure), or automatically set to the
56Comp system time (expressed in UTC time). See the description of the pWCT parameter for more information.
apiHandle must be a valid handle that is returned from 0CXcip_Open.
pPathStr must be a pointer to a string containing the path to a device that supports the WallClockTime object, such as a ControlLogix
controller. For information on specifying paths, see Appendix A.
timeout is used to specify the amount of time in milliseconds the application must wait for a response from the device.
pWCT can point to a structure of type OCXCIPWCTUTC, or can be NULL. If pWCT is NULL, the 56Comp system time (UTC) is used (as
returned by the Win32 function GetSystemTime()).
The OCXCIPWCTUTC structure is defined as follows:
typedef struct tag0CXCIPWCTUTC
{
ULARGE_INTEGER CurrentUTCValue;
char TimeZone[84];
int DSTOffset;
int DSTEnable;
Description SYSTEMTIME SystemTime;
}OCXCIPWCTUTC;
CurrentUTCValue, TimeZone, DSTOffset, and DSTEnable are ignored by this function.
SystemTime is a Win32 structure of type SYSTEMTIME. The SYSTEMTIME structure is as follows:
typedef struct _SYSTEMTIME {
WORD wYear;
WORD wMonth;
WORD wDayOfWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;
} SYSTEMTIME, *PSYSTEMTIME;
The wDayOfWeek member isn't used by the 0CXcip_SetWCTimeUTC function.
0CX_SUCCESS WCT information has been set successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_MEMALLOC Not enough memory is available
Return Value —
OCX_ERR_BADPARAM An invalid parameter was passed
OCX_ERR_NODEVICE The device does not exist
OCX_CIP_INVALID_REQUEST The device does not support the WCT object
OCXHANDLE api Handl e;
BYTE Path[]="p:1,s:0"; // controller in Slot O
i nt rc;
E el rc = OCXci p_Set WCTi meUTC(api Handl e, Path, NULL, 3000);
xample

if (rc !'= OCX_SUCCESS)
{
printf("\n\rOCXcip_Set WCTi nreUTC failed: %\n\r", rc);

}

80

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

OCXHANDLE api Handl e;

OCXCl PWCTUTC Wt ;

BYTE Path[]="p:1,s:0"; // controller in Slot O
i nt rc;

/1 Set the controller tine to current GMI using Systentine

Example 2 Get Syst enili me(&AMt . Syst endli ne) ;
rc = OCXci p_Set WCTi meUTC(api Handl e, Path, &Wt, 3000);
if (rc !'= OCX_SUCCESS)
{
printf("\n\rQOCXcip_Set WCTi neUTC failed: %\n\r", rc);
}
For more information, see the following:
» 0CXcip_GetWCTime on page 74.
» 0CXcip_SetWCTimeUTC on page 80.
0CXcip_PLC5TypedRead
0CXcip_PLC5TypedRead(
OCXHANDLE apiHandle,
BYTE *pPathStr,
Syntax int void *pDataDest,
BYTE *pSourceStr,
WORD NumElements,
WORD timeout);
api Handle Handle returned from OCXcip_Open call
pPathStr Path to device being read
pDataDest Pointer to an array into which the retrieved data is stored
Parameters - - - - —
pSourceStr Pointer to an ASCII string representation of the desired data file in the PLC-5
NumElements Number of data elements to be retrieved from the PLC-5
timeout Number of milliseconds to wait for the read to complete
0CXcip_PLC5TypedRead retrieves data from the PLC-5 at the path that is specified in pPathStr and stores it to the location specified in
pDataDest. apiHandle must be a valid handle that is returned from 0CXcip_Open.
pDataDest is a void pointer to a structure of the desired type of data to be retrieved. The members of this structure are updated with
the data from the PLC-5. Available types are:
OCX_CIP_REAL - Reading of file type F, floating-point
0CX_CIP_STRING82_TYPE - Reading of file type ST, ASCII string
Description WORD - All other permitted file types: 0, I, B, N and S
pSourceStr is a pointer to a string that contains an ASCII representation of the desired data file in the PLC-5 from that the data is to
be retrieved. Available file types are Output Image (0), Input Image (1), Status (S), Bit (B), Integer (N), Floating-point (F), ASCII string (ST)
with the file-type identifier shown in parentheses.
IMPORTANT: Bit data is returned as a full word, it's the responsibility of the application to mask the desired bit.
NumElements is the number data elements to be retrieved from the PLC-5.
timeout is used to specify the amount of time in milliseconds the application must wait for a response from the device.
0CX_SUCCESS Data was retrieved successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_MEMALLOC If enough memory is available
Return Value —
OCX_ERR_BADPARAM If pPathStr, pSourceStr or NumElements are invalid
OCX_ERR_OBJEMPTY If the object ID of this module is empty
OCX_ERR_PCCC If the error occurs in communications to the PLC-5

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 81

Chapter 5

Backplane API Library Functions

Example

OCXHANDLE api Handl e;
WORD ReadDat a[100] ;
WORD ti meout;

BYTE SourceStr[32];
BYTE Pat hStr[32] ;
WORD Nuntl enment s;

i nt rc;

/!l Read 5 elenents of data fromfile type integer N10 in PLC5 at IP
/1 address 10.0.104.123. Start at the fourth el enent of NL10.

/1

sprintf((char *)PathStr, "p:1,s:3,p:2,t:10.0.104.123");// Set path
sprintf((char *)SourceStr,"N10:5"); // Set source to file N10:5

ti meout = 5000; //Allowb5 seconds for xfer

NurmEl ements = 5; //Fetch 5 integers

i f(OCX_SUCCESS != (rc = OCXci p_PLC5TypedRead(api Handl e, Pat hStr
ReadDat a, SourceStr, NunEl ements, tineout)))

{
printf(“PLC5 Read Failed! Error Code = %d\n",rc);

}

el se

{
printf(“PLC5 Read Successful!\n”);

}

0CXcip-PLC5TypedWrite

Syntax

0CXcip_PLC5TypedWrite(
OCXHANDLE apiHandle,
BYTE *pPathstr,

int BYTE *pDataDestStr,

void *pSourceData,

WORD NumElements,

WORD timeout);

Parameters

api Handle Handle returned from OCXcip_Open call

pPathStr Path to device being written

pDataDest Pointer to an ASCII string representation of the desired data file in the PLC-5

pSourceStr Pointer to an array from which the data to be written is retrieved

NumElements Number of data elements to write

timeout Number of milliseconds to wait for the write to complete

Description

82

0CXcip_PLC5TypedWrite writes data to the PLC-5 at the path that is specified in pPathStr to the location specified in pDataDestStr.
apiHandle must be a valid handle that is returned from 0CXcip_Open.
pSourceData is a void pointer to a structure of the desired type of data to be written. The members of this structure are written to the
designated file in the PLC-5. Available types are:

- OCX_CIP_REAL - Writing of file type floating-point (F)

- OCX_CIP_STRING82_TYPE - Writing of file type ASCII string (ST)

- WORD - All other permitted file types: 0, I, B, N and S
pDataDestStr is a pointer to a string that contains an ASCI| representation of the desired data file in the PLC-5 to which the data is to
be written. Permissible file types are Output Image (0), Input Image (1), Status (S), Bit (B), Integer (N), Floating-point (F) and ASCII string
(ST) with the file-type identifier shown in parentheses.
Use the 0CXcip_PLC5ReadModWrite function to write individual bit fields within a data file.
NumElements is the number data elements to be written to the PLC-5.
timeout is used to specify the amount of time in milliseconds the application must wait for a response from the device.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CX_SUCCESS Data was written successfully

OCX_ERR_NOACCESS apiHandle does not have access

OCX_ERR_MEMALLOC If not enough memory is available
Return Value —

OCX_ERR_BADPARAM If pPathStr, pDataDestStr or NumElements are invalid

OCX_ERR_OBJEMPTY If the object ID of this module is empty

OCX_ERR_PCCC If the error occurs in communications to the PLC-5

OCXHANDLE api Handl e;

WORD Wit eDat al 100];

WORD ti meout ;

BYTE pDat aDest Str[32];

BYTE Pat hSt r[32] ;

WORD Nunkl enment s;

i nt rc;

Il Wite 5 elements of data fromWiteData array to file type

i nt eger

/1 N10 in PLC5 at |IP address 10.0.104.123. Start at el enent 24.

/1

sprintf((char *)PathStr, "p:1,s:3,p:2,t:10.0.104.123");// Set path
Example sprintf((char *) pDataDestStr,"N10:23"); // Set destination to

integer //file N10O:23
ti meout = 5000; //Alow 5 seconds for xfer
Nuntl enents = 5; //Wite 5 integers

i f(OCX_SUCCESS !'= (rc = OCXci p_PLC5TypedWite(api Handl e, PathStr,
pDat aDest Str, WiteData, NunEl ements, tineout)))

{
printf(“PLC5 Wite Failed! Error Code = %\n”,rc);

}

el se

{
printf(“PLC5 Wite Successful!\n”);

}

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 83

Chapter 5

Backplane API Library Functions

0CXcip_PLC5WordRangeWrite

0CXcip_PLC5WordRangeWrite(
OCXHANDLE apiHandle,
BYTE *pPathsStr,
Syntax int BYTE *pDataDestStr,
void *pSourceData,
WORD NumElements,
WORD timeout);
api Handle Handle returned from 0CXcip_Open call
pPathStr Path to device being written
Parameters pDataDestStr Pointer to an ASCII string representation of the desired data file in the PLC-5
pSourceData Pointer to an array from which the data to be written is retrieved
NumElements Number of data elements to write
timeout Number of milliseconds to wait for the write to complete
0CXcip_PLC5WordRangeWrite writes data to the PLC-5 at the path that is specified in pPathStr to the location specified in
pDataDestStr. apiHandle must be a valid handle that is returned from 0CXcip_Open.
pSourceData is a void pointer to a structure of the desired type of data to be written. The members of this structure are written to the
designated file in the PLC-5. This pointer is void for consistency with the 0CXcip_PLC5TypedWrite command, the only permitted type
is WORD.
pDataDestStr is a pointer to a string that contains an ASCI| representation of the desired data file in the PLC-5 to which the data is to
Description be written. Permissible file types are Timer (T), Counter (C), Control (R), ASCII (A), BCD (D), Block-transfer (BT), Message (MG), PID (PD)
and SFC status (SC) with the file-type identifier shown in parentheses.
ASCII must be written as an entire word or 2 characters per write.
When writing floating point elements of the PD file type, it's the responsibility of the application to write these as two integers and to
properly orient the bytes for the correct floating point format.
NumElements is the number data elements to be written to the PLC-5.
timeout is used to specify the amount of time in milliseconds the application must wait for a response from the device.
0CX_SUCCESS Data was written successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_MEMALLOC If not enough memary is available
Return Value —
OCX_ERR_BADPARAM If pPathStr, pDataDestStr or NumElements are invalid
OCX_ERR_OBJEMPTY If the object ID of this module is empty
OCX_ERR_PCCC If the error occurs in communications to the PLC-5
OCXHANDL E api Handl e;
WORD Wit eDat a[100] ;
WORD ti meout;
BYTE pDat aDest Str[32];
BYTE Pat hStr[32];
WORD NunEl ement s;
i nt rc;
/1 Wite a preset value to the 1st counter in file C5
/[l in the PLC5 at | P address 10.0.104.123
I
sprintf((char *)PathStr, "p:1,s:3,p:2,t:10.0.104.123");// Set path
Example sprintf((char *)SourceStr,"C5:0. PRE"); // Set destination to preset

/] of the 1st counter in file // C5
timeout = 5000; //Allow5 seconds for xfer
NunEl enents = 1; //Wite 1 value

i f(OCX_SUCCESS != (rc = OCXci p_PLC5Wr dRangeW it e(api Handl e,
Pat hStr, pDataDestStr, WiteData, NunEl ements, timeout)))

{
printf(“PLC5 Counter Wite Failed! Error Code = %\n",rc);

}

el se

{
printf(“PLC5 Counter Wite Successful!\n");

}

84

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip_PLC5WordRangeRead

0CXcip_PLC5WordRangeRead(
OCXHANDLE apiHandle,
BYTE *pPathstr,
Syntax int void *pDataDest,
BYTE *pSourceStr,
WORD NumElements,
WORD timeout);
api Handle Handle returned from 0CXcip_Open call
pPathStr Path to device being read
pDataDest Pointer to an array into which the data is stored
Parameters - - - - —
pSourceStr Pointer to an ASCII string representation of the desired data file in the PLC-5
NumElements Number of data elements to be retrieved from the PLC-5
timeout Number of milliseconds to wait for the read to complete
0CXcip- WordRangeRead retrieves data from the PLC-5 at the path that is specified in pPathStr and stores it to the location specified
in pDataDest. apiHandle must be a valid handle that is returned from 0CXcip_Open.
pDataDest is a void pointer to a structure of the desired type of data to be retrieved. The members of this structure are updated with
the data from the PLC-5. This pointer is void for consistency with the 0CXcip_PLC5TypedRead command, the only permitted type is
WORD.
pSourceStr is a pointer to a string that contains an ASCII representation of the desired data file in the PLC-5 from which the data is to
Description be retrieved. Permissible file types are Timer (T), Counter (C), Control (R), ASCII (A), BCD (D), Block-transfer (BT), Message (MG), PID (PD)
and SFC status (SC) with the file-type identifier shown in parentheses.
IMPORTANT: ASCII must be read as an entire word or 2 characters per read. Also, when retrieving floating point elements of the PD
file type it's the responsibility of the application to retrieve these as two integers and to properly orient the bytes for the correct
floating point format.
NumElements is the number of data elements to be retrieved from the PLC-5.
timeout is used to specify the amount of time in milliseconds the application must wait for a response from the device.
0CX_SUCCESS Data was retrieved successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_MEMALLOC If not enough memary is available
Return Value —
OCX_ERR_BADPARAM If pPathStr, pSourceStr or NumElements are invalid
OCX_ERR_OBJEMPTY If the object ID of this module is empty
OCX_ERR_PCCC If the error occurs in communications to the PLC-5

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 85

Chapter 5 Backplane API Library Functions

OCXHANDLE api Handl e;
WORD ReadDat a[100] ;
WORD ti meout;

BYTE SourceStr[32]
BYTE Pat hStr[32] ;
WORD Nunkl enent s;

i nt rc;

/1l Read the accunul ator value of the 4th timer in file T4

/1 in the PLC5 at | P address 10.0.104.123

/1

sprintf((char *)PathStr, "p:1,s:3,p:2,t:10.0.104.123");// Set path
sprintf((char *)SourceStr,"T4:4.ACC");// Set source to the

Example !/ accunul ator of the 4th

[l counter in file T4

timeout = 5000; //Alowb5 seconds for xfer

NunEl ements = 1; //Read 1 val ue

i f(OCX_SUCCESS != (rc = OCXci p_PLC5Wr dRangeRead(api Handl e,
Pat hStr, ReadData, SourceStr, NunEl ements, tineout)))

{
printf(“PLC5 Tinmer Read Failed! Error Code = %d\n”,rc);

}

el se

{
printf(“PLC5 Tiner Read Successful!\n");

}

86 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip_-PLC5ReadModWrite

0CXcip_PLC5ReadModWrite (

OCXHANDLE apiHandle,
. BYTE *pPathstr,
Syntax int OCX_CIP_PLC5_RMW_CMD *pDatarray,
WORD numAddrs,
WORD timeout);
apiHandle Handle returned from OCXcip_Open call
pPathStr Path to device being read
DataArra Painter to the array containing pointers to the symbolic file addresses and their associated AND
Parameters p y and OR masks for the read-modify-write process.
Number of file addresses to be processed. Maximum number that is permitted is 20 as long as
numAddrs the total number of bytes required for the symbolic addresses and their associated masks does
not exceed 242.
timeout Number of milliseconds to wait for the read-modify-write to complete
0CXcip-PLC5ReadModWrite sets or clears specific bits within the specified addresses in the PLC-5 at the path that is specified in
pPathStr. apiHandle must be a valid handle that is returned from O0CXcip_Open.
pDataArray is a pointer to an array of structure type 0CX_CIP_PLC5_RMW_CMD. This structure contains the symbolic (ASCII) addresses
Description of the locations within the PLC-5 that are to be modified according to the associated AND and OR masks.
P Bit manipulation isn't permitted in floating point (F) or ASCII string (ST) file types.
numAddrs is the number addresses to be modified in the PLC-5.
Each address to be modified must have an associated address, AND and OR mask in pDataArray.
timeout is used to specify the amount of time in milliseconds the application must wait for a response from the device.
0CX_SUCCESS Data was retrieved successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_MEMALLOC If not enough memory is available
OCX_ERR_BADPARAM If pPathStr, pDataArray or numAddrs are invalid
OCX_ERR_OBJEMPTY If the object ID of this module is empty
OCX_ERR_PCCC If the error occurs in communications to the PLC-5
Return Value The OCX_CIP_PLC5_RMW_CMD structure is defined as follows:

typedef struct tag 0CX_CIP_PLC5_RMW_CMD

{
char *AddrStr;

WORD AndMask;

WORD OrMask;

} OCX_CIP_PLC5_RMW_CMD;

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 87

Chapter 5

Backplane API Library Functions

OCXHANDLE api Handl e;
%X_CI P_PLCS_RMV.C ot aarray[2]
WORD ti meout ;

BYTE Pat hStr[32];
WORD numAddr s;

i nt rc;

BYTE Addr Str1[10];
BYTE Addr Str2[10];

// Set bits 5, 10 and 11 at the PLC5 address ‘N7:9' and cl ear

/!l the output bits 4, 5 and 12 at the PLC5 address ‘O 167’
/!l in the PLC5 at |IP address 10.0.104.123
/1

sprintf((char *)PathStr, "p:1,s:3,p:2,t:10.0.104.123");// Set pat

sprintf((char *)AddrStr1, "N7:9"); // Set address 1
sprintf((char *)AddrStr2, "O 167"); // Set address 2

Example Dat aArray[0] . AddrStr = AddrStr1; // Store addr pointer
Dat aArray[0] . Andvask = OxFFFF; // Store AND mask
Dat aArray[0] . Or Mask = 0x0C20; // Store OR nask
Dat aArray[1] . AddrStr = AddrStr2; // Store addr pointer
Dat aArray[1] . AndMask = OxEFCF; // Store AND mask
Dat aArray[1] . Or Mask = 0x0000; // Store OR nask
ti meout = 5000; // Allow 5 seconds for execution
numAddrs = 2; // Read-Md-Wite 2 |ocations
i f(OCX_SUCCESS != (rc = OCXci p_PLC5ReadMbdW it e(api Handl e, PathStr,
Dat aArray, numAddrs, timeout)))
{
printf(“PLC5 Read- Modify-Wite failed! Error Code = %d\n",rc);
}
el se
{
printf(“PLC5 Read- Modi fy-Wite Successful!\n");
}
0CXcip_SLCProtTypedRead
0CXcip_SLCProtTypedRead (
OCXHANDLE apiHandle,
BYTE *pPathStr,
Syntax int void *pDataDest,
BYTE *pSourceStr,
WORD NumElements,
WORD timeout);
apiHandle Handle returned from OCXcip_Open call
pPathStr Path to device being read
pDataDest Pointer to an array into which the data is stored
Parameters - - - - —
pSourceStr Pointer to an ASCII string representation of the desired data file in the SLC
NumElements Number of data elements to be retrieved from the SLC
timeout Number of milliseconds to wait for the read to complete
88 Rockwell Automation Publication 1756-UMO03G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip_SLCProtTypedRead retrieves data from the SLC at the path that is specified in pPathStr and the location that is specified in
pSourceStr. apiHandle must be a valid handle that is returned from OCXcip_Open.
pDataDest is a void pointer to a structure of the desired type of data to be retrieved. The members of this structure are updated with
the data from the SLC. Permissible types are:

- OCX_CIP_REAL - Reading of file type F, floating-point

- OCX_CIP_STRING82_TYPE - Reading of file type ST, ASCII string

Description - WORD - All other permitted file types: 0,1, B, N, S, A, T, R, and C
pSourceStr is a pointer to a string that contains an ASCII representation of the desired data file in the SLC from which the data is to be
retrieved. Permissible file types are Output Image (0), Image (1), Status (S), Bit (B), Integer (N), ASCII (A), Floating-point (F), ASCII string
(ST), Counter (C), Control (R), and Timer (T) with the file-type identifier shown in parentheses.
Bit data is returned as a full word. If bit(s) information is desired, it's the responsibility of the application to mask the desired bit(s).
NumElements is the number data elements to be retrieved from the SLC.
timeout is used to specify the amount of time in milliseconds the application must wait for a response from the device.
0CX_SUCCESS Data was retrieved successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_MEMALLOC If not enough memory is available
Return Value ——
OCX_ERR_BADPARAM If pPathStr, pSourceStr or NumElements are invalid
OCX_ERR_OBJEMPTY If the object ID of this module is empty
OCX_ERR_PCCC If the error occurs in communications to the SLC
OCXHANDLE api Handl e;
WORD ReadDat a[100] ;
WORD ti meout;
BYTE SourceStr[32];
BYTE Pat hsStr[32];
WORD NunEl enment s;
i nt rc,;
/'l Read 5 elenents of data fromfile type integer N10 in SLC at IP
/] address 10.0.104.123. Start at the 19th el enent
/1
sprintf((char *)PathStr, "p:1,s:3,p:2,t:10.0.104.123");// Set path
Example sprintf((char *)SourceStr,"N10:18"); // Set source to file N10:18

timeout = 5000; //Alow5 seconds for xfer
Nuntl ements = 5; //Fetch 5 integers

i f(OCX_SUCCESS != (rc = OCXci p_SLCProt TypedRead(api Handl e, PathStr,
ReadDat a, SourceStr, NunEl enents, tinmeout)))

{
printf(“SLC Read Failed! Error Code = %l\n",rc);
}
el se
{
printf(“SLC Read Successful!\n");

}

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 89

Chapter 5

Backplane API Library Functions

0CXcip_SLCProtTypedWrite

0CXcip_SLCProtTypedWrite (
OCXHANDLE apiHandle,
BYTE *pPathsStr,
Syntax int BYTE *pDataDestStr,
void *pSourceData,
WORD NumElements,
WORD timeout);
apiHandle Handle returned from 0CXcip_Open call
pPathStr Path to device being written
Parameters pDataDestStr Pointer to an ASCII string representation of the desired data file in the SLC
pSourceData Pointer to an array from which the data to be written is retrieved
NumElements Number of data elements to write
timeout Number of milliseconds to wait for the write to complete
0CXcip_SLCProtTypedWrite writes data to the SLC at the path that is specified in pPathStr and the location that is specified in
pDataDestStr. apiHandle must be a valid handle that is returned from 0CXcip_Open.
pSourceData is a void pointer to a structure of the desired type of data to be written. The members of this structure are written to the
designated file in the SLC. Permissible types are:
OCX_CIP_REAL - Writing of file type floating-point (F)
OCX_CIP_STRING82_TYPE - Writing of file type ASCII string (ST)
Description WORD - All other permitted file types: 0,1, B, N, S, A, T,R,and C
pDataDestStr is a pointer to a string that contains an ASCII representation of the desired data file in the SLC to which the data is to be
written. Permissible file types are Output Image (0), Input Image (1), Status (S), Bit (B), Integer (N), ASCII (A), Floating-point (F), ASCII
string (ST), Counter (C), Control (R), and Timer (T) with the file-type identifier shown in parentheses.
Use the API function OCXcip_SLCReadModWrite to write individual bit fields within a data file.
NumElements is the number data elements to be retrieved from the SLC.
timeout is used to specify the amount of time in milliseconds the application must wait for a response from the device.
0CX_SUCCESS Data was written successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_MEMALLOC If not enough memary is available
Return Value —
OCX_ERR_BADPARAM If pPathStr, pDataDestStr or NumElements are invalid
OCX_ERR_OBJEMPTY If the object ID of this module is empty
OCX_ERR_PCCC If the error occurs in communications to the SLC
90 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

Example

OCXHANDLE api Handl e;

WORD Wit eDat a[100];
WORD ti meout;

BYTE pDat aDest Str[32];
BYTE Pat hStr[32] ;
WORD NunEl enment s;

i nt rc;

/] Wite 5 elenents of data fromWiteData array to file type
i nt eger

/1 N1O in SLC at | P address 10.0.104.123. Start at the 1st el enent.
11
sprintf((char *)PathStr, "p:1,s:3,p:2,t:10.0.104.123");// Set path

sprintf((char *) pDataDestStr,"Nl0:0"); // Set destination to
i nt eger
//file N10:0

timeout = 5000; //Allow 5 seconds for xfer
NunEl ements = 5; //Wite 5 integers

i f(OCX_SUCCESS !'= (rc = OCXci p_SLCTypedWite(api Handl e, PathStr,
pDat aDest Str, WiteData, NunEl enents, tinmeout)))

{
printf(“SLC Wite Failed! Error Code = %\n",rc);

}

el se

{
printf(“SLC Wite Successful!\n”);

}

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 91

Chapter 5

Backplane API Library Functions

0CXcip_SLCReadModWrite

0CXcip_SLCReadModWrite (
OCXHANDLE apiHandle,
BYTE *pPathstr,
Syntax int BYTE *pDataDestStr,
void *pSourceData,
WORD *pSourceBitMask,
WORD timeout);
apiHandle Handle returned from 0CXcip_Open call
pPathStr Path to device being written
pDataDestStr Pointer to an ASCII string representation of the desired data file in the SLC
Parameters pSourceData Pointer to a WORD value containing the desired bit values for the destination
. Pointer to a WORD value containing the mask bits. Bits to be changed are set to 1and those not to be
pSourceBitMask changed to a 0.
timeout Number of milliseconds to wait for the write to complete
0CXcip_SLCReadModWrite writes data to the SLC at the path that is specified in pPathStr and the location that is specified in pDataDestStr. apiHandle
must be a valid handle that is returned from 0CXcip_Open.
pSourceData is a void pointer to a structure of the desired type of data to be written. The members of this structure are written to the designated file
in the SLC. This pointer is void for consistency with the 0CXcip_SLCProtTypedWrite command, the only permitted type is one WORD.
pDataDestStr is a pointer to a string that contains an ASCII representation of the desired data file in the SLC to which the data is to be written.
Description Permissible file types are Output Image (0), Input Image (1), Status (S), Bit (B), Integer (N), ASCII (A), Counter (C), Control (R) and Timer (T) with the file-
P type identifier shown in parentheses.
Float and ASCII String types aren't permitted.
pSourceBitMask is a pointer to a WORD value that contains the bit mask. Each bit in this mask correlates to bits in pSourceData. For each bit in
pSourceBitMask set to a value of 1, the corresponding bit value in pSourceData is written to the corresponding bit in the destination location
represented by pDataDestStr. For each bit in pSourcdBitMask set to a value of 0, no change occurs.
timeout is used to specify the amount of time in milliseconds the application must wait for a response from the device.
0CX_SUCCESS Data was written successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_MEMALLOC If not enough memaory is available
Return Value - —
OCX_ERR_BADPARAM If pPathStr, pDataDestStr or pSourceBitMask are invalid
OCX_ERR_OBJEMPTY If the object ID of this module is empty
OCX_ERR_PCCC If the error occurs in communications to the SLC
92 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

Example

OCXHANDLE api Handl e;

WORD Wit eDat a;

WORD Bi t Mask;

WORD ti meout;

BYTE pDat aDest Str[32];
BYTE Pat hStr[32];

i nt rc;

/1 Set to 1 the value of bit nunbers 4 and 11 of word 5 of the integer
/1 file N7 in the SLC at | P address 10.0.104.123. Set to 0 the value
/1l of bit 14 in that sane |ocation

/1

sprintf((char *)PathStr, "p:1,s:3,p:2,t:10.0.104.123");// Set path

sprintf((char *) pDataDestStr,"N7:5"); // Set destination to integer
[/file N7

timeout = 5000; //Alow 5 seconds for xfer

WiteData = 0x0810; // Set bits 4 and 11, clear 14. This val ue
/] could al so be OxBFFF.

Bi t Mask = 0x4810; // Setup mask bits

i f(OCX_SUCCESS !'= (rc = OCXci p_SLCReadMbdW it e(api Handl e, PathStr,
pDat aDest Str, &WiteData, &BitMsk, tinmeout)))

{
printf(“SLC Bit Wite Failed! Error Code = %l\n”,rc);

}

el se

{
printf(“SLC Bit Wite Successful!\n");

}

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 93

Chapter 5 Backplane API Library Functions

Miscellaneous Functions This section describes the Miscellaneous functions.

0CXcip-GetldObject

Syntax int 0CXcip_GetldObject{OCXHANDLE apiHandle, OCXCIPIDOBJ *idobject);
api Handle Handle returned from 0CXcip_Open call
Parameters — -
idobject Pointer to structure of type 0CXCIPIDOBJ
0CXcip_GetldObject retrieves the identity object for the module. apiHandle must be a valid handle that is returned from 0CXcip_Open.
idobject is a pointer to a structure of type OCXCIPIDOBJ. The members of this structure are updated with the module identity data.
The OCXCIPIDOBJ structure is defined as follows:
typedef struct tag0CXCIPIDOBJ
{
WORD VendorlD; // Vendor ID number
WORD DeviceType; // General product type
Description WORD ProductCode; // Vendor-specific product identifier
BYTE MajorRevision; // Major revision level
BYTE MinorRevision; // Minor revision level
DWORD SerialNo; // Module serial number
BYTE Name[32]; // Text module name (null-terminated)
BYTE Slot; // Not used
} OCXCIPIDOBY;
Return Value 0CX_SUCCESS ID object was retrieved successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCXHANDLE api Handl e;
OCXCl PI DOBJ i dobj ect ;
Example OCXci p_Get | dObj ect (api Handl e, &i dobj ect);
printf(“Mdule Nane: % Serial Nunber: % u\n”, idobject.Nang,
i dobj ect . Seri al No) ;

94 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip_SetidObject

Syntax int 0CXcip_SetldObject(OCXHANDLE apiHandle, OCXCIPIDOBJ *idobject);
api Handle Handle returned from OCXcip_Open call
Parameters — -
idobject Pointer to structure of type OCXCIPIDOBJ
0CXcip_SetldObject lets an application customize the identity object for the module. apiHandle must be a valid handle that is
returned from OCXcip_Open.
idobject is a pointer to a structure of type OCXCIPIDOBJ. The members of this structure must be set to the desired values before the
function is called. The SerialNo and Slot members aren't used.
The OCXCIPIDOBJ structure is defined as follows:
typedef struct tagOCXCIPIDOBJ
{
WORD VendorlD; // Vendor ID number
Description WORD DeviceType; // General product type
WORD ProductCode; // Vendor-specific product identifier
BYTE MajorRevision; // Major revision level
BYTE MinorRevision; // Minor revision level
DWORD SerialNo; // Not used by 0CXcip_SetldObject
BYTE Name[32]; // Text module name (null-terminated)
BYTE /1 Not used by 0CXcip_SetldObject
}0CXCIPIDOBJ;
0CX_SUCCESS ID object was set successfully
Return Value -
OCX_ERR_NOACCESS apiHandle does not have access
OCXHANDLE api Handl e;
OCXCl PI DOBJ i dobj ect ;
Examol OCXci p_Get 1 dObj ect (api Handl e, & dobject); // get default info
xample
P /'l Change nodul e nane
strcpy((char *)idobject. Name, “Custom Modul e Nane”);
OCXci p_Set | dObj ect (api Handl e, &i dobj ect);
0CXcip-GetActiveNodeTable
0CXcip_GetActiveNodeTablet(
. OCXHANDLE apiHandle,
Syntax int int *rackSize,
DWORD *ant);
apiHandle Handle returned from 0CXcip_Open call
Parameters rackSize Pointer to integer into which is written the number of slots in the local rack
ant Pointer to DWORD into which is written a bit array corresponding to the slot occupancy of the
local rack (bit O corresponds to slot 0)
0CXcip_GetActiveNodeTable returns information about the size and occupancy of the local rack. apiHandle must be a valid handle
that is returned from OCXcip_Open.
Description rackSize is a pointer to an integer into which the size (number of slots) of the local rack is written.

P ant is a pointer to a DWORD into which a bit array is written. This bit array reflects the slot occupancy of the local rack, where bit 0
corresponds to slot 0. If a bit is set (1), then there’s an active module that is installed in the corresponding slot. If a bit is clear (0), then
the slot is (functionally) empty.
0CX_SUCCESS Active node table was returned successfully

Return Value

0CX_ERR_NOACCESS

apiHandle does not have access

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 95

Chapter 5

Backplane API Library Functions

Example

OCXHANDLE api Handl e;

i nt racksi ze;

DWORD r ackant ;

int i;

OCXci p_Get Act i veNodeTabl e(api Handl e, &racksize, &rackant);
for (i=0; i<racksize; i++)

{
if (rackant & (1<<i))
printf(“\nSlot % is occupied”, i);
el se

printf(“\nSlot % is empty”, i);

}

0CXcip_MsgResponse

Syntax

0CXcip_MsgResponse(OCXHANDLE apiHandle,
DWORD msgHandle,
BYTE serviceCode,

int BYTE *msgBuf,

WORD msgSize,

BYTE returnCode,

WORD extendederr);

Parameters

apiHandle Handle returned from OCXcip_Open call

msgHandle Handle returned in 0CXCIPSERVSTRUC

serviceCode Message service code returned in OCXCIPSERVSTRUC

msgBuf Pointer to buffer containing data to be sent with response (NULL if none)

msgSize Number of bytes of data to send with response (0 if none)

returnCode Message return code (0CX_SUCCESS if no error)

extendederr Extended error code (0 if none)

Description

0CXcip_MsgResponse is used by an application that must delay the response to an unscheduled message received via the
service_proc callback. The service_proc callback is called sequentially and overlapping calls aren't supported. If the application must
support overlapping messages (for example, to maximize performance when there are multiple message sources), then the response
to the message can be deferred by returning 0CX_CIP_DEFER_RESPONSE in the service_proc callback. Later, 0CXcip-MsgResponse
can be called to complete the message. For example, the service_proc callback can queue the message for later processing by
another thread (or multiple threads).

The service_proc callback must save any needed data that is passed to it in the 0CXCIPSERVSTRUC structure. This data is only valid
in the context of the callback.

0CXcip_MsgResponse must be called after 0CX_CIP_DEFER_RESPONSE is returned by the callback. If 0CXcip_MsgResponse isn't
called, communications resources aren't freed and a memory leak results.

If 0CXcip_MsgResponse isn't called within the message timeout, the message fails. The sender determines the message timeout.
msgHandle and serviceCode must match the corresponding values that are passed to the service_proc callback in the
OCXCIPSERVSTRUC structure.

Return Value

0CX_SUCCESS Response was sent successfully

OCX_ERR_NOACCESS apiHandle does not have access

Example

OCXHANDLE api Handl e;

DWORD nmsgHandl e;

BYTE servi ceCode;

BYTE r spdat a[100] ;

// At this point assune that a nessage has previously

/1 been received via the service_proc call back. The

/'l service code and nessage handl e were saved there.

OCXci p_MsgResponse(api Handl e, nsgHandl e, servi ceCode, rspdata,
100, OCX_SUCCESS, 0);

For more information, see service_proc on page 104.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip_GetVersioninfo

Syntax int 0CXcip_GetVersionInfo(OCXHANDLE handle, OCXCIPVERSIONINFO *verinfo);
handle Handle returned by previous call to 0CXcip_Open
Parameters - n
verinfo Pointer to structure of type OCXCIPVERSIONINFO
0CXcip_GetVersioninfo retrieves the current version of the API library, BPIE, and the backplane device driver. The information is
returned in the structure verinfo. handle must be a valid handle that is returned from 0CXcip_Open or 0CXcipClientOpen.
The OCXCIPVERSIONINFO structure is defined as follows:
typedef struct tagOCXCIPVERSIONINFO
{
WORD APISeries; // API series
Description WORD APIRevision; // API revision
WORD BPEngSeries; // Backplane engine series
WORD BPEngRevision; // Backplane engine revision
WORD BPDDSeries; // Backplane device driver series
WORD BPDDRevision; // Backplane device driver revision
} OCXCIPVERSIONINFO;
Return Value 0CX_SUCCESS The version information was read successfully.
OCX_ERR_NOACCESS handle does not have access
OCXHANDLE Handl e;
OCXCl PVERSI ONI NFO veri nf o;
/* print version of APl library */
Example OCXci p_Get Ver si onl nf o(Handl e, &eri nf o) ;
printf(“Library Series %, Rev %\n”, verinfo. APl Seri es,
veri nfo. APl Revi si on) ;
printf(“Driver Series %, Rev %\n”, verinfo.BPDDSeries,
veri nf o. BPDDRevi si on) ;
0CXcip-SetLED
Syntax int 0CXcip_SetLED(OCXHANDLE handle, int lednum, int ledstate);
handle Handle returned by previous call to 0CXcip_Open
Parameters lednum Selects which LED to set state. For example, 0 = 0K, 1= User1, 2 = User2
ledstate Specifies the state for the LED
0CXcip_SetLED is a general-purpose function that lets the application set the state of any of the LED indicators. handle must be a
valid handle that is returned from 0CXcip_Open.
lednum is used to select the LED to be set. 0 is the module status (or OK) LED, is the first User LED, 2 is the second User LED, and so
Description on.
ledstate must be set to OCX_LED_STATE_RED, OCX_LED_STATE_GREEN, OCX_LED_STATE_YELLOW or OCX_LED_STATE_OFF to set the
indicator Red, Green, Yellow, or Off, respectively.
IMPORTANT: Not all LEDs are supported on all hardware platforms. Yellow isn't supported on all platforms.
0CX_SUCCESS The LED state was set successfully.
Return Value OCX_ERR_NOACCESS handle does not have access
OCX_ERR_BADPARAM ledstate or lednum is invalid.
OCXHANDLE Handl e;
Example /* Set User 3 LED RED */

OCXci p_Set LED(Handl e, 3, OCX_LED STATE_RED);

For more information, see 0CXcip_GetLED on page 98.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 97

Chapter 5 Backplane API Library Functions
0CXcip—GetLED
Syntax int 0CXcip_GetLED(OCXHANDLE handle, int lednum, int *ledstate);
handle Handle returned by previous call to 0CXcip_Open
Parameters |lednum Selects which LED to set state. For example, 0 = 0K, 1= User1, 2 = User2
ledstate Pointer to a variable to receive LED state
0CXcip_GetLED lets an application read the current state of the specified LED. handle must be a valid handle that is returned from 0CXcip_Open.
Description |ledstate must be a pointer to an integer variable. On successful return, the variable is set to 0CX_LED_STATE_RED, 0CX_LED_STATE_GREEN,
OCX_LED_STATE_YELLOW or OCX_LED_STATE_OFF.
0CX_SUCCESS The LED state was set successfully.
Return Value |OCX_ERR_NOACCESS handle does not have access
OCX_ERR_BADPARAM lednum is invalid.
OCXHANDL E Handl e;
Examole i nt | edst at e;
X
y /* Read the state of LED 3 */
OCXci p_CGet LED(Handl e, 3, &l edstate);
For more information, see 0CXcip_SetLED on page 97.
0CXcip_SetDisplay
Syntax int 0CXcip_SetDisplay(OCXHANDLE handle, char *display_string);
handle Handle returned by previous call to 0CXcip_Open
Parameters - - - -
display_string 4-character string to be displayed
0CXcip_SetDisplay lets an application load 4 ASCII characters to the alphanumeric display. handle must be a valid handle that is returned from
Description {0CXcip_Open.
display_string must be a pointer to a NULL-terminated string whose length is exactly 4 (not including the NULL).
0CX_SUCCESS The LED state was set successfully.
Return Value |OCX_ERR_NOACCESS handle does not have access
OCX_ERR_BADPARAM display_string length isn't 4.
OCXHANDLE Handl e;
char buf [5];
Example /* Display the tine as HHWM */
sprintf(buf, “9%92d%2d”, tm hour, tmmn);
OCXci p_Set Di spl ay(Handl e, buf);
For more information, see OCXcip_GetDisplay on page 98.
0CXcip_GetDisplay
Syntax int 0CXcip_GetDisplay(OCXHANDLE handle, char *display_string);
handle Handle returned by previous call to 0CXcip_Open
Parameters |— - - — -
display_string Pointer to buffer to receive displayed string
0CXcip_GetDisplay returns the string that is currently displayed on the alphanumeric display. handle must be a valid handle that is returned from
Description OCXcip_Open.
P display_string must be a pointer to a buffer that is at least 5 bytes in length. On successful return, this buffer contains the 4-character display string and
terminating NULL character.
Return Value 0CX_SUCCESS The LED state was retrieved successfully.
OCX_ERR_NOACCESS handle does not have access
OCXHANDLE Handl e;
char buf [5];
Example

/* Fetch the display string */

OCXci p_Set Di spl ay(Handl e,

buf);

For more information, see 0CXcip_SetDisplay on page 98.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip-GetSwitchPosition

Syntax int 0CXcip_GetSwitchPosition(OCXHANDLE handle, int *sw_pos)
handle Handle returned by previous call to 0CXcip_Open
Parameters - - - -
SW_pos Pointer to integer to receive switch state
0CXcip_GetSwitchPosition returns the states of the three BCD rotary switches. The states of the switches are mapped into the 32 bits
of the returned value as shown as follows:
Bit(s) Description
. 0:3 unused
Description T4 BCD rotary switch 3 (least significant digit)
1:8 BCD rotary switch 2 (middle digit)
15:12 BCD rotary switch 1(most significant digit)
31116 unused
0CX_SUCCESS The switch position information was read successfully.
Return Value OCX_ERR_NOACCESS handle does not have access
OCX_ERR_NOTSUPPORTED This function isn't supported on this hardware.
OCXHANDLE Handl e;
i nt swpos;
/* check switch position */
Example OCXci p_Get Swi t chPosi ti on(Handl e, &wpos) ;
printf("Switches are set to % % %\ n",
(swpos >> 12) & OxOF,
(swpos >> 8) & OxOF,
(swpos >> 4) & OxOF);
0CXcip—SetModuleStatus
Syntax int 0CXcip_SetModuleStatus(OCXHANDLE handle, int status);
handle Handle returned by previous call to 0CXcip_Open
Parameters
status Module status
0CXcip_SetModuleStatus lets an application set the status of the module’s status LED indicator. handle must be a valid handle that is
returned from OCXcip_Open.
Description status must be set to 0CX_MODULE_STATUS_0K, OCX_MODULE_STATUS_FLASHING, or OCX_MODULE_STATUS_FAULTED. If the status is
0K, the module status LED indicator is set to Green. If the status is FAULTED, the status indicator is set to Red. If the status is
FLASHING, the status indicator alternates between Red and Green approximately every 500 ms.
0CX_SUCCESS The module status was set successfully.
Return Value OCX_ERR_NOACCESS handle does not have access
OCX_ERR_BADPARAM status is invalid.
OCXHANDLE Handl e;
Example /* Set the Status indicator to Red */

OCXci p_Set Modul eSt at us(Handl e, OCX_MODULE_STATUS_FAULTED) ;

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 99

Chapter 5 Backplane API Library Functions

0CXcip_ErrorString

Syntax int 0CXcip_ErrorString(int errcode, char *buf);
Parameters errcode Err.or code returned from an API function
buf Pointer to user buffer to receive message
Description OCXcip-ErrorString returns a text error message that is associated with the error code errcode. The null-terminated error message is
copied into the buffer that is specified by buf. The buffer must be at least 80 characters in length.
Return Value 0CX_SUCCESS Message returned in buf
OCX_ERR_BADPARAM Unknown error code
char buf[80];
int rc;
Example [* print error nmessage */
OCXcip_ErrorString(rc, buf);
printf(“Error: %", buf);
0CXcip_Sleep
Syntax int 0CXcip_Sleep(OCXHANDLE apiHandle, WORD msdelay);
Parameters apiHandle H.andlfe ret'urned by previous call to 0CXcip_Open
msdelay Time in milliseconds to delay
Description 0CXcip_Sleep delays for approximately msdelay milliseconds.
Return Value 0CX_SUCCESS Success
OCX_ERR_NOACCESS apiHandle does not have access
OCXHANDLE api Handl e;
i nt ti meout =200;
/1 Sinple timeout | oop
whil e(tineout--)
Example {
/1 Poll for data, etc.
/1l Break if condition is net (no tineout)
/] Else sleep a bit and try again
OCXci p_Sl eep(api Handl e, 10);
}
0CXcip-CalculateCRC
Syntax int 0CXcip_CalculateCRC (BYTE *dataBuf, DWORD dataSize, WORD *crc);
dataBuf Pointer to buffer of data
Parameters dataSize Number of bytes of data
cre Painter to 16-bit word to receive CRC value
Description {JhCXqip_Ca!culateCRC computes a 16-bit CRC for a range of data. This can be useful for validating a block of data; for example, data
at is retrieved from the battery-backed Static RAM.
Return Value 0CX_SUCCESS |Success
WORD crc;
BYTE buf fer[100];
Example
/1l Compute a crc for our buffer
OCXci p_Cal cul at eCRC(buf fer, 100, &crc);

100 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

0CXcip_SetModuleStatusWord

Syntax int 0CXcip_SetModuleStatusWord(OCXHANDLE handle, WORD statusWord, WORD statusWordMask);
handle Handle returned by previous call to 0CXcip_Open

Parameters status Word Module status data
statusWordMask Bit mask specifying the bits in the status word are to be madified
0CXcip_SetModuleStatusWord lets an application set the 16-bit status attribute of the module’s Identity Object. handle must be a valid

Description handle that is returned from 0CXcip_Open.

P statusWordMask is a bit mask that specifies which bits in statusWord are written to the module’s status attribute. Standard status

word bit fields are defined by definitions with names beginning with 0CX_ID_STATUS_. See the API header file for more information.

Return Value 0CX_SUCCESS The module status word was set successfully.
OCX_ERR_NOACCESS handle does not have access
OCXHANDLE Handl e;

E | /* Set the Status to indicate a m nor recoverable fault */

xample .
P OCXci p_Set Modul eSt at usWor d(Handl e, OCX | D_STATUS RCV_M NOR_FAULT,
OCX_| D_STATUS FAULT_STATUS NMASK) ;
For more information, see 0CXcip_GetModuleStatusWord on page 101.
0CXcip_GetModuleStatusWord

Syntax int 0CXcip_GetModuleStatusWord(OCXHANDLE handle, WORD *statusWord);
handle Handle returned by previous call to 0CXcip_Open

Parameters - -
statusWord Painter to word to receive module status data

Descrintion 0CXcip_GetModuleStatusWord lets an application read the current value of the 16-bit status attribute of the module’s Identity Object.

P handle must be a valid handle that is returned from 0CXcip_Open.

0CX_SUCCESS The module status word was read successfully.

Return Value
OCX_ERR_NOACCESS handle does not have access
OCXHANDL E Handl e;
WORD st at usWrd;

Example

/* Read the current status word */
OCXci p_Get Modul eSt at usWor d(Handl e, &st at usWrd) ;

For more information, see 0CXcip_SetModuleStatusWord on page 101.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 101

Chapter 5

Backplane API Library Functions

Callback Functions The functions in this section aren't part of the API, but must be implemented by the

application. The API calls the connect_proc or service_proc functions when connection or
service requests are received for the registered object.

The optional fatalfault_proc function is called when the backplane device driver detects a

fatal fault condition. The optional resetrequest_proc function is called when a reset request
is received by the backplane device driver.

connect_proc

Syntax OCXCALLBACK connect_proc{ OCXHANDLE objHandle, OCXCIPCONNSTRUC *sConn);
objHandle Handle of registered abject instance

Parameters -
sConn Pointer to structure of type OCXCIPCONNSTRUCT
connect_proc is a callback function that is passed to the API in the OCXcip_RegisterAssemblyQbj call. The API calls the connect_proc function when a
Class 1scheduled connection request is made for the registered object instance that is specified by objHandle.
sConn is a pointer to a structure of type 0CXCIPCONNSTRUCT. This structure is shown as follows:
typedef struct tagOCXCIPCONNSTRUC
{
OCXHANDLE connHandle; // unique value which identifies this connection
DWORD reg_param; // value passed via 0CXcip_RegisterAssemblyObj
WORD reason; // specifies reason for callback
WORD instance; // instance specified in open
WORD producerCP; // producer connection point specified in open
WORD consumerCP; // consumer connection point specified in open
DWORD *I0TApi; // pointer to originator to target packet interval
DWORD *[TOApi; // pointer to target to originator packet interval
DWORD |0DeviceSn; // Serial number of the originator
WORD i0Vendorld; // Vendor Id of the originator
WORD rxDataSize; // size in bytes of receive data
WORD txDataSize; // size in bytes of transmit data
BYTE *configData; // pointer to configuration data sent in open

- WORD configSize; // size of configuration data sent in open

Description
WORD *extendederr; // Contains an extended error code if an error occurs
} OCXCIPCONNSTRUC;

connHandle is used to identify this connection. This value must be passed to the 0CXcip_SendConnected and OCXcip_ReadConnected functions.
reg_param is the value that was passed to 0CXcip_RegisterAssemblyObj. The application can use this to store an index or pointer. It isn't used by the API.
reason specifies whether the connection is being opened or closed. A value of 0CX_CIP_CONN_OPEN indicates that the connection is being opened,
0CX_CIP_CONN_OPEN_COMPLETE indicates the connection has been successfully opened, 0CX_CIP_CONN_NULLOPEN indicates there’s new configuration
data for a currently open connection, and 0CX_CIP_CONN_CLOSE indicates that the connection is being closed. If the reason is 0CX_CIP_CONN_CLOSE, the
following parameters are unused: producerCP, consumerCP, api, rxDataSize, and txDataSize.

instance is the instance number that is passed in the forward open. This corresponds to the Configuration Instance on the RSLogix 5000° generic profile.
producerCP is the producer connection point from the open request. This corresponds to the Input Instance on the RSLogix 5000 generic profile.
consumerCP is the consumer connection point from the open request. This corresponds to the Output Instance on the RSLogix 5000 generic profile.
[0TApi is a pointer to the originator-to-target actual packet interval for this connection, expressed in microseconds. This is the rate at which connection
data packets are received from the originator. This value is initialized according to the requested packet interval from the open request. The application
can reject the connection if the value isn't within a predetermined range. If the connection is rejected, return OCX_CIP_FAILURE and set extendederr to
0CX_CIP_EX_BAD_RPI. The minimum RPI value that is supported by the 56Comp module is 200us.

ITOApi is a pointer to the target-to-originator actual packet interval for this connection, expressed in microseconds. This is the rate at which connection
data packets are transmitted by the module. This value is initialized according to the requested packet interval from the open request. The application
can increase this value if necessary.

[0DeviceSn is the serial number of the originating device, and i0Vendorld is the vendor ID. The combination of vendor ID and serial number is guaranteed
to be unique, and can be used to identify the source of the connection request. This is impartant when connection requests can be originated by multiple
devices.

rxDataSize is the size in bytes of the data to be received on this connection. txDataSize is the size in bytes of the data to be sent on this connection.
configData is a pointer to a buffer containing any configuration data that was sent with the open request. configSize is the size in bytes of the
configuration data.

extendederr is a pointer to a word that can be set by the callback function to an extended error code if the connection open request is refused.

102

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

The connect_proc routine must return one of the following values if the reason is 0CX_CIP_CONN_OPEN:
If the reason is OCX_CIP_CONN_OPEN_COMPLETE or OCX_CIP_CONN_CLOSE, the return value must be 0CX_SUCCESS.

0CX_SUCCESS Connection is accepted

Return Value [0y cip_BAD_INSTANCE instance is invalid
0CX_CIP_NO_RESOURCE Unable to support connection due to resource limitations
OCX_CIP_FAILURE Connection is rejected - extendederr can be set
If the open request is rejected, extendederr can be set to one of the following values:

Extended 0CX_CIP_EX_CONNECTION_USED The requested connection is already in use.

Error Codes | (OCX_CIP_EX_BAD_RPI The requested packet interval can't be supported.
0CX_CIP_EX_BAD_SIZE The requested connection sizes do not match the permitted sizes.
OCXHANDLE Handl e;
OCXCAL LBACK S(S)ggﬁg; _proc(OCXHANDLE obj Handl e, OCXCl PCONNSTRUCT
{
/1 Check reason for callback
switch(sConn->reason)
{
case OCX_Cl P_CONN_OPEN:
/1 A new connection request is being nade. Validate the
/1 parameters and determine whether to all ow the connecti on.
/1 Return OCX SUCCESS if the connection is to be established,
/1 or one of the extended error codes if not. See the sanple
/1 code for nore details.

Example ret ur n(OCX_SUCCESS) ;

case OCX_Cl P_CONN_OPEN_COWVPLETE:

/1 The connection has been successfully opened. |f necessary,
/1l call OCXcip_WiteConnected to initialize transmt data.

r et ur n(OCX_SUCCESS) ;

case OCX_Cl P_CONN_NULLOPEN:

/'l New configuration data is being passed to the open connection.
/1 Process the data as necessary and return success.

ret ur n(OCX_SUCCESS) ;

case OCX_Cl P_CONN_CLCSE:

/1 This connection has been closed — informthe application

r et ur n(OCX_SUCCESS) ;

}
}

For more information, see the following:

« (0CXcip_RegisterAssembly0bj on page 51.
o 0CXcip_Write Connected on page 53.

» 0CXcip_ReadConnected on page 54.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 103

Chapter 5

Backplane API Library Functions

service_proc

Syntax OCXCALLBACK service_proc(OCXHANDLE objHandle, OCXCIPSERVSTRUC *sServ);

objHandle Handle of registered object
Parameters -

sServ Pointer to structure of type OCXCIPSERVSTRUC

service_proc is a callback function that is passed to the APl in the 0CXcip_RegisterAssemblyObj call. The API calls the service_proc
Description function when an unscheduled message is received for the registered object that is specified by objHandle.

sServ is a pointer to a structure of type 0CXCIPSERVSTRUC. This structure is as follows:
typedef struct tagOCXCIPSERVSTRUC

{

DWORD reg_param; // value passed via OCXcip_RegisterAssemblyObj
WORD instance; // instance number of object being accessed

BYTE serviceCode; // service being requested

WORD attribute; // attribute being accessed

BYTE **msgBuf; // pointer to pointer to message data

WORD offset; // member offset

WORD *msgSize; // pointer to size in bytes of message data

WORD *extendederr; // Contains an extended error code if an error occurs
BYTE fromSlot; // Slot number in local rack that sent the message
DWORD msgHandle; // Handle used by OCXcip_MsgRespanse

} OCXCIPSERVSTRUC;

reg_param is the value that was passed to 0CXcip_RegisterAssemblyObj. The application can use this to store an index or pointer. It
isn't used by the API.

instance specifies the instance of the object being accessed. serviceCode specifies the service being requested. attribute specifies
the attribute being accessed.

msgBuf is a pointer to a pointer to a buffer containing the data from the message. This pointer must be updated by the callback
routine to point to the buffer containing the message response upon return.

offset is the offset of the member being accessed.

msgSize points to the size in bytes of the data pointed to by msgBuf. The application must update this with the size of the response
data before returning.

extendederr is a pointer to a word that can be set by the callback function to an extended error code if the service request is refused.
fromSlot is the slot number in the local rack from which the message was received. If the module in this slot is a communications
bridge, then it's impossible to determine the actual originator of the message.

msgHandle is only needed if the callback returns 0CX_CIP_DEFER_RESPONSE. If this code is returned, the message response isn't sent
until 0CXcip_MsgResponse is called. See 0CXcip_MsgResponse for more information.

If the service_proc callback returns OCX_CIP_DEFER_RESPONSE, it must save any needed data that is passed to it in the
OCXCIPSERVSTRUC structure. This data is only valid in the context of the callback. If the received message contains data, the buffer
pointed to by msgBuf can be accessed after the callback returns; however, the pointer itself isn't valid.

Return Value

The service_proc routine must return one of the following values:

0CX_SUCCESS The message was processed successfully
OCX_CIP_BAD_INSTANCE Invalid class instance

0CX_CIP_BAD_SERVICE Invalid service code

OCX_CIP_BAD_ATTR Invalid attribute

OCX_CIP_ATTR_NOT_SETTABLE Attribute isn't settable

OCX_CIP_PARTIAL_DATA Data size invalid

0CX_CIP_BAD_ATTR_DATA Attribute data is invalid

OCX_CIP_FAILURE Generic failure code

0CX_CIP_DEFER_RESPONSE Defer respanse until 0CXcip_MsgResponse is called

104

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Chapter 5 Backplane API Library Functions

Example

OCXHANDLE Handl e;

servi ce_proc(OCXHANDLE obj Handl e,
OCXCALLBACK OCXCl PSERVSTRUC *sServ)
{

/1 Sel ect which instance is being accessed.

/'l The application defines how each instance is defined.
swi t ch(sServ->i nstance)

{
case 1. // lInstance 1

/1 Check serviceCode and attribute; perform

/'l requested service if appropriate

br eak;

case 2: // Instance 2

/1 Check serviceCode and attribute; perform

/1 requested service if appropriate

br eak;

defaul t:

return(OCX_Cl P_BAD I NSTANCE); // Invalid instance

}
}

For more information, see the following:
» 0CXcip_RegisterAssemblyQbj on page 51.

« 0CXcip_MsgResponse on page 96.

fatalfault_proc

Syntax

OCXCALLBACK fatalfault_proc();

Parameters

None

Description

fatalfault_proc is an optional callback function that can be passed to the APl in the OCXcip_RegisterFatalFaultRtn call. If the
fatalfault_proc callback has been registered, it's called if the backplane device driver detects a fatal fault condition. This lets the
application an opportunity to take appropriate actions.

Return Value

The fatalfault_proc routine must return 0CX_SUCCESS.

Example

OCXHANDLE Handl e;

OCXCALLBACK fatal fault_proc(void)
{
/1 Take whatever action is appropriate for the application:
/1 - Set local 1Oto safe state

/1 - Log error

/1l - Attenpt recovery (for exanmple, restart nodul e)

r et ur n(OCX_SUCCESS) ;

}

For more information, see OCXcip_RegisterFatalFaultRtn on page 52.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 105

Chapter 5

Backplane API Library Functions

resetrequest_proc

Syntax OCXCALLBACK resetrequest_proc();
Parameters None
resetrequest_proc is an optional callback function that can be passed to the APl in the OCXcip_RegisterResetReqRtn call. If the
Description resetrequest_proc callback has been registered, it's called if the backplane device driver receives a module reset request (Identity
P Object reset service). This lets the application an opportunity to take appropriate actions to prepare for the reset, or to refuse the
reset.
0CX_SUCCESS The module resets upon return from the callback.
Return Value - -
OCX_ERR_INVALID The module does not reset and continues normal operation.
OCXHANDLE Handl e;
OCXCALLBACK resetrequest _proc(void)
{
/1 Take whatever action is appropriate for the application:
Examole /1 - Set local 10to safe state
X
P /1 - Performorderly shutdown
/1l - Reset special hardware
/1 - Refuse the reset

ret

}

urn(OCX_SUCCESS) ; // allow the reset

106

For more information, see OCXcip_RegisterResetReqRtn on page 53.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Appendix A

Four-character Display

Program-controlled Status Indicators

The ControlLogix® Compute modules have the following to indicate the module conditions:
» Four-character Display
 Status Indicators

The user program controls the display and indicators. When the module powers up, the
following occurs.

1. The right-most status indicator is steady red and the others are off.
2. The 4-character display shows a sequence of BIOS POST codes.

3. When the 0S boots and the backplane driver loads, the status indicators cycle through a
test sequence; each status indicator goes through a steady red, steady green, off cycle.

4, At the end of the test sequence, the right-most status indicator is steady green, and the
4-character display shows 'INIT".

This figure shows the indicators on the modules.

ControlLogix Compute Module Indicators

1756-CMS1D1

COMPUTE

0000 ~§—— Four-character Display

FUNC FUNC FUNC OK
3 2 ! \

Module Status Indicators

The ControlLogix Compute module includes a 4-character alphanumeric display. An
application uses the 0CXcip_SetDisplay on page 98 function to show the 4-character message
on the display.

This table lists the messages that are displayed.

ControlLogix Compute Module Display Messages

Message Description

<blank> or POST codes Device driver hasn't yet been started (or application has written to the display)
INIT Device driver has successfully started

0K BPIE has successfully started

- BPIE has stopped (host application has exited)

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 107

108

Appendix A Program-controlled Status Indicators

Status Indicators

The ControlLogix Compute modules have status indicators. An application uses the
0CXcip_SetLED on page 97 function to set the indicator condition.

This table describes the possible indicator states.

ControlLogix Compute Module Status Indicator States

State Description
0ff The module isn't powered.
Steady green The module operating normally.
One of the following:
« A major communication fault has occurred between the module and
Steady red ControlLogix chassis backplane.

You must troubleshoot your application to determine the cause of the
steady red condition on indicator OK.

« A module shutdown is complete.

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Appendix B

Specify the Communication Path

To construct a communications path, enter one or more path segments that lead to the target
device. Each path segment goes from one module to another module over the chassis
backplane or over an EtherNet/IP™ network.

Each path segment contains: p:x.{s.c.tky
Where: p:x specifies the device’s port number to communicate through.

Where x is:
1- backplane from any ControlLogix® module
2 - Ethernet port from a ControlLogix EtherNet/IP module
, - Separates the start and end point of the path segment
{s,c.t}:y - specifies the address of the module you're going to. Where:
s:y ControlLogix chassis slot number
t:y EtherNet/IP network IP address, for example, 10.0.104.140

If there are multiple path segments, separate each segment with a commal(,).

EXAMPLE To communicate from a module in slot 4 to a module in slot 0 of the
same chassis. - p:1,s:0
To communicate from a module in slot 4 of a chassis, through a 1756-
EN2T in slot 2, over EtherNet/IP, to a 1756-EN2T (IP address of
10.0.104.42) in slot 4, to a module in slot 0 of a remote backplane. -
p:1,5:2,p:2,t:10.0.104.42,p:1,5:0

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 109

Appendix B Specify the Communication Path

Notes:

110 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Appendix c

Controller Tags

Program Tags

Module Tag Naming Conventions

ControlLogix® tags are in the following categories:
+ Controller Tags
» Program Tags

Controller Tags have global scope. To access a controller scope tag, you specify the tag name.

Example Controller Tags

Tag Name Single Tag

Array[T1] Single Dimensioned Array Element
Array[1,3] 2 - Dimensional Array Element
Array[1,2,3] 3 - Dimensional Array Element
Structure.Element Structure element
StructureArray[1].Element Single Element of an array of structures

Program Tags are tags that are declared in a program and scoped only within the program in
which they're declared.

To address a Program Tag correctly, you must specify the identifier “PROGRAM:” followed by
the program name. A dot (.) is used to separate the program name and the tag name:

PROGRAM:ProgramName.TagName

Example Program Tags

Tag Name

PROGRAM:MainProgram.TagName Tag “TagName” in the program called “MainProgram”
PROGRAM:MainProgram.Array[T1] An array element in the program “MainProgram”
PROGRAM:MainProgram.Structure.Element Structure element in the program “MainProgram”

A tag name can contain up to 40 characters. It must start with a letter or underscore ("_"),
however, all other characters can be letters, numbers, or underscores.

Names can't contain two contiguous underscore characters and can't end in an underscore.
Letter case isn't considered significant. The naming conventions are based on the IEC-T131
rules for identifiers.

For additional information on ControlLogix CPU tag addressing, see the following:
« ControlLogix System User Manual, publication 1756-UM001
» ControlLogix 5580 Controllers User Manual, publication 1756-UM543

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 m

http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1756-um001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1756-um543_-en-p.pdf

Appendix C Module Tag Naming Conventions

Notes:

n2 Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

Index

A H
account lockout in Windows 0S 27, 35 hardware 11 - 12
API 4-character display 11, 15, 43
architecture 41 battery 11, 22 - 23
components 41 DisplayPort 11, 16
functions 42 Ethernet ports 11, 18
library 43 - 45 memory 11

module connections 16 - 19
reset button 11, 21

B rotary switches 11, 20
batt status indicators 11, 15
attery USB 3.0 port 11, 17
replace 22 - 23
BIOS Password
Linux 08 38 I
BPIE Windows 03 31 IE policies in Windows 0S 28
use with API 41 IP address
set on Ethernet ports 19
tal : bers 10 L
catalog numbers .
cip Linux 0S

implement BIOS password 38
overview 33 - 39

secure boot 39

security settings 34 - 37

components and devices 42
messaging 42
controller tags 111

ControlLogix redundancy
use Compute module 14

M
D module components 11 - 12
. module connections 16 - 19
DisplayPort . DisplayPort 16, 25
_ connect a monitor 16 - Ethernet ports 18
driver signature enforcement in Windows 0S USB 3.0 port 17
29 module location

remote chassis 14
standalone chassis 13

E module tags 111
embedded 0S controller tags M
Linux 0S overview 33 - 39 _program tags Tl
module power-up 25, 33 monitor ' '
out-of-box configuration 25, 33 connect via the DisplayPort 16
security settings in Linux 0S 34 - 37
security settings in Windows 0S 26 - 30
use reset button 21 N
Windows 0S overview 25 - 32 network connections
Ethernet ports connect to an EtherNet/IP network 18
connect to an EtherNet/IP network 18 set the IP address 19
set the |P address 19 network policies in Windows 0S 10, 28, 35, 36
0

out-of-box configuration
embedded 0S 25, 33

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 m

Index

N4

P w
password Windows 0S
complexity in Windows 0S 27, 34 account lockout policies 27, 35
implement BIOS password 31, 38 driver signature enforcement 29
using on Windows 0S 27, 34 IE policies 28
peripherals implement BIOS password 31
connect 25, 33 network policies 10, 28, 35, 36
connect via USB 3.0 port 17 overview 25 - 32
policies remote desktop settings 23
Windows 0S removable media policies 28
account lockout policies 27, 35 screen saver 26

IE policies 28
network policies 10, 28, 35, 36
password policies 27, 34

secure boot 32
security settings 26 - 30
using password 27, 34

remote desktop settings 29
removable media policies 28
program tags 111

real time clock

maintain via battery 22 - 23
remote desktop settings in Windows 0S 29

removable media use in Windows 0S 28
replace battery 22 - 23
reset button

use with embedded 0S 21
rotary switches 20

S

screen saver
Windows 0S 26
SDK

install 43
remove 43
secure boot

Linux 0S 39
Windows 0S 32
security settings

Linux 0S 34 - 37
Windows 0S 26 - 30
set the IP address 19

system status

4-character display 43, 107
status indicators 107

USB 3.0 port
connect peripherals 17, 25

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023

ControlLogix Compute Modules User Manual

Rockwell Automation Publication 1756-UM003G-EN-P - June 2023 15

Rockwell Automation Support

Use these resources to access support information.

Find help with how-to videos, FAQs, chat, user forums, Knowledgebase, and product

Technical Support Center notification updates. rok.auto/support
Local Technical Support Phone Numbers Locate the telephone number for your country. rok.auto/phonesupport

Quickly access and download technical specifications, installation instructions, and

Technical Documentation Center User manuals.

rok.auto/techdocs

Literature Library Find installation instructions, manuals, brochures, and technical data publications. rok.auto/literature
Product Compatibility and Download Center Download firmware, associated files (such as AOP, EDS, and DTM), and access product
(PCDC) release notes. [nk.autoy/ pede

Documentation Feedback

Your comments help us serve your documentation needs better. If you have any suggestions on how to improve our content, complete the
form at rok.auto/docfeedback.

Waste Electrical and Electronic Equipment (WEEE)

At the end of life, this equipment should be collected separately from any unsorted municipal waste.

Rockwell Automation maintains current product environmental compliance information on its website at rok.auto/pec.

Allen-Bradley, ControlLogix, expanding human possibility, Kinetix, PanelView, PLC-5, POINT I/0, PowerFlex, Rockwell Automation, RSLogix 5000, SLC, and Stratix are trademarks of Rockwell
Automation, Inc.

CIP and EtherNet/IP are trademarks of ODVA, Inc.
Microsoft, Microsoft Windows, and Windows are trademarks of Microsoft Corporation.
Trademarks not belonging to Rockwell Automation are property of their respective companies.

Rockwell Otomasyon Ticaret A.S. Kar Plaza i Merkezi E Blok Kat:6 34752, igerenkdy, istanbul, Tel: +90 (216) 5698400 EEE Yénetmeligine Uygundur

Publication 1756-UM003G-EN-P - June 2023

Supersedes Publication 1756-UMO03F-EN-P - May 2022 Copyright © 2023 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.

https://rok.auto/support
https://rok.auto/phonesupport
https://rok.auto/techdocs
https://rok.auto/literature
https://rok.auto/pcdc
https://literature.rockwellautomation.com/idc/groups/literature/documents/du/ra-du002_-en-e.pdf
https://rok.auto/docfeedback
https://rok.auto/pec
https://www.instagram.com/rokautomation/
https://www.linkedin.com/company/rockwell-automation
https://twitter.com/ROKAutomation
https://www.facebook.com/ROKAutomation/
https://www.rockwellautomation.com/

	ControlLogix Compute Modules User Manual, 1756-UM003G-EN-P
	Table of Contents
	Preface
	About This Publication
	Download Firmware, AOP, EDS, and Other Files
	Summary of Changes
	Terminology
	Additional Resources

	ControlLogix Compute Modules
	Module Overview
	Catalog Number Explanation
	Series B ControlLogix Compute Module Features
	Double Data Rate (DDR) Backplane Communication
	Trusted Platform Module (TPM) 2.0 Settings

	Module Components
	Module Location
	Local Chassis
	Remote Chassis

	Status Indicators
	Connection Options
	DisplayPort
	USB 3.0 Port
	Ethernet Ports

	Rotary Switches
	Reset Button
	Replacement Battery

	Windows Operating System Overview
	Follow Design and Engineering Best Practices
	Connect Monitor and Peripherals Before Powerup
	Security Settings
	Windows 10 OS Updates
	Using .NET Framework 3.5
	Inactivity Lock and Screen Saver Settings
	Password Settings
	Account Lockout Settings
	Network Settings
	Internet Explorer Settings
	Removable Media Settings
	Remote Desktop Settings
	Driver Signature Enforcement

	Implement a BIOS Password
	1756-CMS1B1/A Module BIOS Security Settings
	1756-CMS1B1/B Module BIOS Security Settings

	Secure Boot
	Information on the Module Can’t Be Erased
	Data Lost Due to OS Corruption Can’t Be Recovered

	Linux Operating System Overview
	Follow Design and Engineering Best Practices
	Connect Monitor and Peripherals Before Powerup
	Security Settings
	Password Settings
	Account Lockout Settings
	Secure Shell Access Settings
	User Account Access Settings
	Access to Core Dumps Settings
	Prelink Settings
	Ping Settings
	Settings Not Implemented On the Module

	Additional Considerations
	Implement a BIOS Password
	1756-CMS1C1/A Module BIOS Security Settings
	1756-CMS1C1/B, 1756-CMS1D1 and 1756-CMS1H1 Module BIOS Security Settings

	Secure Boot
	Information on the Module Can’t Be Erased
	Data Lost Due to OS Corruption Can’t Be Recovered

	Application Development
	API Architecture
	CIP Messaging
	API Library Already Installed
	Install the API Development Files (SDK)
	Remove the SDK
	Four-character Alphanumeric Display
	API Library
	Calling Convention
	Header Files
	Sample Code
	Import Library
	API Files

	Host Application

	Backplane API Library Functions
	Initialization Function Category
	OCXcip_Open
	OCXcip_OpenNB
	OCXcip_Close

	Object Registration Function Category
	OCXcip_RegisterAssemblyObj
	OCXcip_UnregisterAssemblyObj

	Special Callback Registration Function Category
	OCXcip_RegisterFatalFaultRtn
	OCXcip_RegisterResetReqRtn

	Connected Data Transfer Function Category
	OCXcip_Write Connected
	OCXcip_ReadConnected
	OCXcip_ImmediateOutput
	OCXcip_WaitForRxData
	OCXcip_WriteConnectedImmediate

	Tag Access Functions
	OCXcip_AccessTagData
	OCXcip_AccessTagDataAbortable
	OCXcip_CreateTagDbHandle
	OCXcip_DeleteTagDbHandle
	OCXcip_SetTagDbOptions
	OCXcip_BuildTagDb
	OCXcip_TestTagDbVer
	OCXcip_GetSymbolInfo
	OCXcip_GetStructInfo
	OCXcip_GetStructMbrInfo
	OCXcip_GetTagDbTagInfo
	OCXcip_AccessTagDataDb
	OCXcip_SetTagAccessConnSize

	Messaging Functions
	OCXcip_GetDeviceIdObject
	OCXcip_GetDeviceICPObject
	OCXcip_GetDeviceIdStatus
	OCXcip_GetExDevObject
	OCXcip_GetWCTime
	OCXcip_SetWCTime
	OCXcip_GetWCTimeUTC
	OCXcip_SetWCTimeUTC
	OCXcip_PLC5TypedRead
	OCXcip_PLC5TypedWrite
	OCXcip_PLC5WordRangeWrite
	OCXcip_PLC5WordRangeRead
	OCXcip_PLC5ReadModWrite
	OCXcip_SLCProtTypedRead
	OCXcip_SLCProtTypedWrite
	OCXcip_SLCReadModWrite

	Miscellaneous Functions
	OCXcip_GetIdObject
	OCXcip_SetIdObject
	OCXcip_GetActiveNodeTable
	OCXcip_MsgResponse
	OCXcip_GetVersionInfo
	OCXcip_SetLED
	OCXcip_GetLED
	OCXcip_SetDisplay
	OCXcip_GetDisplay
	OCXcip_GetSwitchPosition
	OCXcip_SetModuleStatus
	OCXcip_ErrorString
	OCXcip_Sleep
	OCXcip_CalculateCRC
	OCXcip_SetModuleStatusWord
	OCXcip_GetModuleStatusWord

	Callback Functions
	connect_proc
	service_proc
	fatalfault_proc
	resetrequest_proc

	Program-controlled Status Indicators
	Four-character Display
	Status Indicators

	Specify the Communication Path
	Module Tag Naming Conventions
	Controller Tags
	Program Tags

	Index

	Back Cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

